Lewis Creek Stream Restoration Henderson County, North Carolina

DMS Project #733 NCDEQ Contract #5631

MY-05 Monitoring Report

Data Collected: September-November 2015 Submitted: December 2015

Prepared for: North Carolina Department of Environmental Quality Division of Mitigation Services

217 West Jones St. Suite 3000A Raleigh, NC 27603

Prepared by: Mogensen Mitigation, Inc. P.O. Box 690429 Charlotte, NC 28227

TABLE OF CONTENTS

Executive Summary	
1.1 Project Goals and Objectives	3
1.2 Background	3
1.3 Vegetative Conditions	4
1.4 Significant Flood Events	5
1.5 Stream Assessment	5
1.6 Wetland Conditions	6
1.7 Problem Areas	7
Methodology	
2.1 Vegetation Methodologies	8
2.2 Wetland Methodologies	8
2.3 Stream Methodologies	9
References	

APPENDICES

Appendix A. Project Vicinity Map & Background	
Figure 1. Vicinity Map	12
Table 1. Project Components & Mitigation Credits	
Table 2. Project Activity & Reporting History	
Table 3. Project Contacts	15
Table 4. Project Attributes	16
Appendix B. Visual Assessment Data	
Figure 2.0-2.4 Current Conditions Plan View	
Table 5. Visual Stream Assessment	23
Table 6. Vegetation Condition Assessment	23
Stream Cross Section Station Photos	
Vegetation Plot Photos	
Photo Point Photos	27
Appendix C. Vegetation Plot Data	
Table 7. Vegetation Plot Criterion Attainment	
Table 8. CVS Stem Count Total & Planted	
Appendix D. Stream Survey Data	
Figure 4.0-4.4 Cross Section Data	39
Figure 5 Longitudinal Profile Data	
Figure 6.0-6.2. Pebble Count Data	
Table 9.0-9.1 Baseline Stream Data Summary	

Table 10.0 Monitoring- Cross Section Morphology	50
Table 10.1 Monitoring- Stream Reach Morphology.	51
Appendix E. Hydrologic Data	
Table 11 Verification of Bankfull Events	54
Figure 7.0 Rainfall Percentiles	55
Figures 8.0-8.5 Groundwater Gauge Data	56
Table 12. Wetland Gauge Attainment	62
Figure 9. Wetland Delineation Data Forms	63

1.0 EXECUTIVE SUMMARY

Based on our field observations and review of the data collected in during the fall of 2015, we conclude that the Lewis Creek project is trending toward a successful restoration project.

1.1 Project Goals & Objectives

The Lewis Creek Stream Restoration Site (Lewis Creek Site) is located in an active agricultural community and many of the forest lands in the area are being converted to orchards or residential development. The Lewis Creek Site is protected in perpetuity and is located immediately adjacent to a preserved mountain bog. The segment of Lewis Creek that underwent active restoration is classified by the North Carolina Department of Environmental Quality (NCDEQ) Division of Water Resources (DWR) as Class C, trout waters (NCDDWR, 2007). The following is a list of Goals & Objectives to be gained from this project:

Goals

- 1. Reestablishing stream stability and capacity to transport watershed flows and sediment load by restoring 1,750 linear feet of stable channel morphology;
- 2. Re-introduce a more frequent hydrologic connection between the stream and the floodplain;
- 3. Establish native riparian bottomland hardwood tree and shrub community;
- 4. Reduce nonpoint source sediment pollution and excessive nutrient inputs;
- 5. Enhance the flood storage capacity of the Site by adjusting channel and/or flood plain elevations while improving the hydrologic connection of the stream to its floodplain.

Objectives

- 1. Utilize natural channel design principles to create a more stable pattern, profile and dimension morphology and improve stream habitat using grade/bank stabilization structures;
- 2. Lower floodplain berms along Lewis Creek to allow more access by flood events;
- 3. Successfully plant riparian and flood plain areas with native woody trees and shrubs conforming to the density requirements specified below;
- 4. Eliminate accelerated bank erosion, exclude livestock, and reestablish native riparian buffers substantially greater than 50 feet in width;
- 5. Reestablish floodplain connectivity;
- 6. Preserve the entire Site with a Conservation Easement in perpetuity.

1.2 Background

The Lewis Creek Site is located in Henderson County, North Carolina, northeast of the City of Hendersonville. The Site is located within the French Broad River Watershed (USGS HUC

06010105) and is a third order tributary to Clear Creek. A Vicinity Map is included in Appendix A. The land use is dominated by agriculture (primarily fruit orchards and row crops) and forest. Much of the surrounding forested land is being converted to orchards and sod farms. New residential development is also encroaching toward the Lewis Creek Site. The project area consists of 1,750 linear feet of stream restoration on the main channel of Lewis Creek. The Site begins at North Ridge Road culvert crossing and continues downstream for 1,750 lf to the end of the project. Approximately 10 acres of forested wetlands are located along the south side of Lewis Creek, most of which extends beyond the conservation easement. This area is owned by the Carolina Mountain Land Conservancy (CMLC). CMLC is actively involved in the management of this site and we have coordinated closely with them during the monitoring field work. Prior to restoration activities Lewis Creek had been impacted by straightening and berm construction. The design was done by Jordan, Jones & Goulding, Inc. (JJG) and constructed by Carolina Environmental Contracting for the North Carolina Ecosystem Enhancement Program (EEP), now Division of Mitigation Services (DMS). The fifth year monitoring field work was completed in September 2015 by Mogensen Mitigation, Inc. (MMI). The monitoring was done in conformance with the NCDMS Monitoring Report Template dated February 2014.

The Lewis Creek Site was constructed in April 2011 and MY-01 was completed in 2012 by JJG. No monitoring occurred for MY-02. Mogensen Mitigation, Inc. (MMI) conducted the monitoring for MY-03 in October of 2013, the monitoring for MY-04 in September of 2014 and MY-05 in September 2015. The Lewis Creek Site includes 1,750 lf of stream restoration and a small area of riparian wetlands (approximately 0.18 ac.) on the Lewis Creek floodplain. During this fall monitoring season (September, 2015, MY-05), in addition to the usual monitoring tasks, MMI has delineated the wetlands and mapped the extent using GPS survey equipment. Wetland Data Forms are included in Appendix E.

The existing stream reach that was available for restoration was 1,663 lf of Lewis Creek. The stream restoration consisted of Priority Level 2 restoration along the main channel of Lewis Creek resulting in 1,750 lf of restored stream. The restoration plan also included planting the stream banks and riparian zones with native tree and shrub species. The designed channel dimension was based on a combination of dimensionless ratios from the reference reach along Raccoon Branch, NC Regional Curve for Rural mountain streams, Rosgen stable reach data ranges (Rosgen 2004a) and existing conditions. Appendix A includes more details on the Site's location, history and watershed background information.

1.3 Vegetative Conditions

In September 2015, each of the five pre-established 10 x 10 meter vegetation plots were relocated, flagged and surveyed by MMI staff using Version 4.2 of the CVS-EEP Level 2 Vegetation Monitoring Protocol (Lee *et al.*, 2008). According to this protocol, both planted and volunteer stems were resampled. For this monitoring year (MY-05 2015), the success criterion specified in the mitigation plan requires a minimum survival rate of 260 live stems/per acre.

In 2015 the five CVS monitoring plots had surviving planted stem densities of 81 to 364 stems per acre (average 210 per acre), and three plots did not meet the MY-05 success criterion (260 stems per acre) based on planted stem survival. However, the total density of planted plus native volunteer woody stems ranges from 931 to 7729, and all plots have densities far exceeding the success criterion when volunteer stems are included (Appendix C, Table 8). Predominant volunteer species include *Salix nigra, Salix cinerea, Alnus serrulata, Betula nigra,* and *Cornus amomum*.

1.4 Significant Flood Events

Observations of the crest stage gauge (CSG) in September, 2015 suggest that at least one storm event did reach overbank flooding during the winter/spring of 2015 (Table 11). This most likely occurred during June 2015 when the NC mountains experienced two weeks of rain. MMI noted the height of the flooding (8") and removed the existing CSG during the site visit field work. Each monitoring year for the last three years the site experienced a bankfull event, therefore, this criteria has been achieved.

1.5 Stream Assessment

Observations from this year's fall monitoring field work indicate that the stream banks and the present stream dimensions along the restored reach appear to be stable and within acceptable parameters. The entire 1,750 lf reach of Lewis Creek was surveyed and assessed from the project origin at North Ridge Road bridge to the project terminus. This assessment included five surveyed crosssections (Figure 4), a longitudinal-profile survey (Figure 5) visual stability (Table 5) and field verifying the Current Condition Plan View (Figure 2).

During our fall site visit in September, MMI observed evidence of an active beaver dam at approximately station 7+75 just upstream from VP-03 that was backing up water for roughly half

the project. MMI staff manually removed this dam to facilitate the longitudinal survey, and informed DMS about the presence of beaver at that time. A DMS contractor was subsequently notified in September 2015 and is conducting monthly site visits to trap beaver and remove dams as necessary.

Several center bars persist in the stream channel and have been closely watched in all monitoring years. Larger bars occur at approximately Stations 8+50 and 11+50. Smaller center bars that had been observed downstream in past years were flooded this year due to the beaver activity. In general, these center bars are not a cause for concern as the streambank vegetation along these reaches is preventing lateral migration of the stream. The stream flows continue to be adequate to keep most in-stream vegetation from overtaking the stream channel even in summer months.

The sediment and substrate loads were a mix of sand in slower moving stream reaches and cobble & gravel in the riffles (see Pebble Count data below). Based on the recent monitoring data and our visual inspection the restored stream channel appears to be functioning as designed, maintaining stability, and adequately passing bedload sediment. Stream bank erosion was not observed anywhere along the restored reach. All structures appear to be functioning as designed and are not showing any signs of erosion or piping. Cross-section survey data indicates that channel geometry remains stable with only slight changes in channel morphology evident.

1.6 Wetland Conditions

Data from groundwater monitoring gages 1, 2, 4, 5 & 6 supported by field observations suggest that these areas are not close to meeting jurisdictional wetland hydrology (see Appendix E). It is important to note, however, that between the fall monitoring periods of 2014 & 2015 several of the gauges have malfunctioned at times resulting in data gaps, despite routine checks, maintenance, recalibration, and even replacement of Gauges 1 & 6 in May 2015. We have supplemented the incomplete gauge data with field measurements of saturation depth (manual readings taken with a tape measure) during each site visit. We recognize these occasional data points cannot document the duration of shallow saturation, but the limited evidence they provide does support our opinion that the wells are probably not meeting wetland hydrology success criteria in these areas.

Water tables at gauges 2 through 6 remained far below 12" from January through March prior to the growing season, except for brief spikes. Thus it is unlikely that they achieved saturation for

extended periods during the growing season. For gauge 1 we do not have any January to March data for 2015, but during Jan to Mar of the previous year there were only a few intermittent days when it rose above the 12" depth threshold. Field observations further indicate that these areas did not exhibit wetland indicators such as dominant wetland vegetation and/or hydric soils. Observed trends in vegetation, surface water, and groundwater data suggest that the only jurisdictional wetland area is in the vicinity of Gauge 3, as described below.

Field observations indicate that any wetland hydrology in the vicinity of Gauge 3 is based on surface flows from the adjacent mountain bog. On numerous occasions during the last three years of monitoring, we have observed standing water in this area during periods when the gauge readings clearly showed the water table more than 12 inches below the surface. MMI staff have repeatedly used manual measurements with a tape measure to insure that the gauge was working correctly in these incidences. The manual measurements have confirmed that there was a disconnect between the surface flows and the groundwater in the wetland area.

Although the jurisdictional wetland area found on the Lewis Creek site is relatively small (~0.18 acres), it contains a high diversity of native wetland shrubs and forbs. According to the Cowardin Classification System it is considered a Palustrine Scrub-Shrub Broad-Leaved Deciduous with Saturated Water Regime (PSS1B). The wetlands are dominated by river birch, black willow and silky dogwood in the canopy layer and alder and grey willow in the shrub layer. The herbaceous vegetation includes sedges, rushes, jewelweed, woolgrass, Joe-Pye weed, boneset, seedbox and cardinal flower. The soils are mapped Codorus silt loam with inclusions of Hatboro silt loam which is a Hydric A soil. The soils are saturated and mucky in the wetter areas. As noted in the Methodology Section, the wetland boundaries were delineated using the latest state and federal rules for determining jurisdictional waters of the United States. Routine Wetland Determination Data Forms were completed for this wetland area and included in Appendix E.

1.7 Problem Areas

One new, active, beaver dam was found to be backing up water for >700 linear feet of the project. This dam was removed by hand to the best of our abilities during the site visit and DMS was notified at that time. A DMS contractor was subsequently notified in September 2015 and is conducting monthly site visits to trap beaver and remove dams as necessary.

With respect to planted vegetation, the only minor problem we observed in 2015 is the continuing sand deposition in isolated flood plain areas, as noted in previous years. Cumulatively, these areas represent a relatively small amount of the site area below the mapping threshold (~0.1 acres), as noted on table 6. These

Page 7 of 72

areas of sand deposition tend to support annual herbaceous vegetation that can root quickly in the new sand piles.

No other problems were observed to exist at this time.

2.0 METHODOLOGY

Monitoring methodologies follow the CVS-EEP Level 2 Vegetation Monitoring Protocol for Recording Vegetation (Lee *et al.* 2008). All photos were taken with a Cannon digital camera and are available electronically. A Trimble Hand Held GPS unit was used to locate veg. plot corners, groundwater gauges and problem areas.

For gauges 1 & 6 a laptop equipped with PC TRANSFER and ODYSSEY software was used to download the data from the groundwater gauges. For gauges 2, 3, 4, 5 an HP calculator and Dell Laptop computer were used to download the data. All graphics have been done using ArcGIS and are available electronically.

2.1 Vegetation Methodologies

Five 10 x 10 square meter veg. plots were installed and monitored according to the CVS-EEP Level 2 Vegetation Monitoring Protocol Version 4.2 (Lee *et al.* 2008). The plot corners are marked with 1" Aluminum or PVC pipe and flagged with bright red flagging tape. Data collected from each plot is included in Appendix C. Monitoring plot locations are shown on the maps in Appendix B. Plant identification was aided by the publication *Flora of the Southern and Mid-Atlantic States* (Weakley 2012).

2.2 Wetland Methodologies

Six (6) Infinities Continuous-Read Groundwater gauges were installed by MMI in 2013 according to the Technical Note HY-1A-3.1 (USACE 1993). Three gauges (1, 2, 3) are located on the south side of Lewis Creek and three (4, 5, 6) are located along the north side of Lewis Creek (per directions from Mike McDonald NCDMS PM). The gauges are set to record data every 24 hours and are downloaded at regular intervals through the year. All six (6) groundwater Monitoring Gauges were downloaded most recently in November, 2015, and were checked regularly throughout the growing season. Data is provided in an Excel spreadsheet and may be supplemented with data from the NC CRONOS database, Station ID NC-HN-15 and field observations. This year, project wetland boundaries were delineated (figure 2) using the Routine Wetland Determination method (Level 2-Onsite Inspection; field sheets available in Appendix E) as defined in the 1987 USACE Wetland Delineation Manual, as required by our contract.

2.3 Stream Methodologies

Five cross-sections and 1,750 linear feet of stream long-pro were surveyed in September 2015 using a Trimble RDK survey-grade GPS unit. The survey data locations were plotted using ARC GIS 10.0 and Excel. Cross-sectional data was based on a linear alignment between end points marked by metal pins. Measurements at each cross-section include points at point of origin, bankfull, top of bank, toe of slope and thalweg for each stream side supplemented with photos. Long-pro measurements include thalweg, and water surface taken at the head of feature (i.e. riffle, run, pool glide) in addition to pool depths. It should be noted that due to the change in water levels resulting from beaver activity it was difficult to establish the exact location of some features, particularly the pools. For this reason, only one pool was measured in 2015. In addition, visual and photographic assessment of in-stream structures was conducted to determine overall project success. Structure failures include collapse of structure, undermining, abandonment of channel, piping around the structure. Stream assessment data are included in Appendix D with cross-sections and monitored stream reaches indicated on maps in Appendix B. In addition, MMI used manual crest stage gauges to verify bankfull events.

All raw data supporting the tables, figures and graphs in the appendices are available to NCDMS upon request.

3.0 References

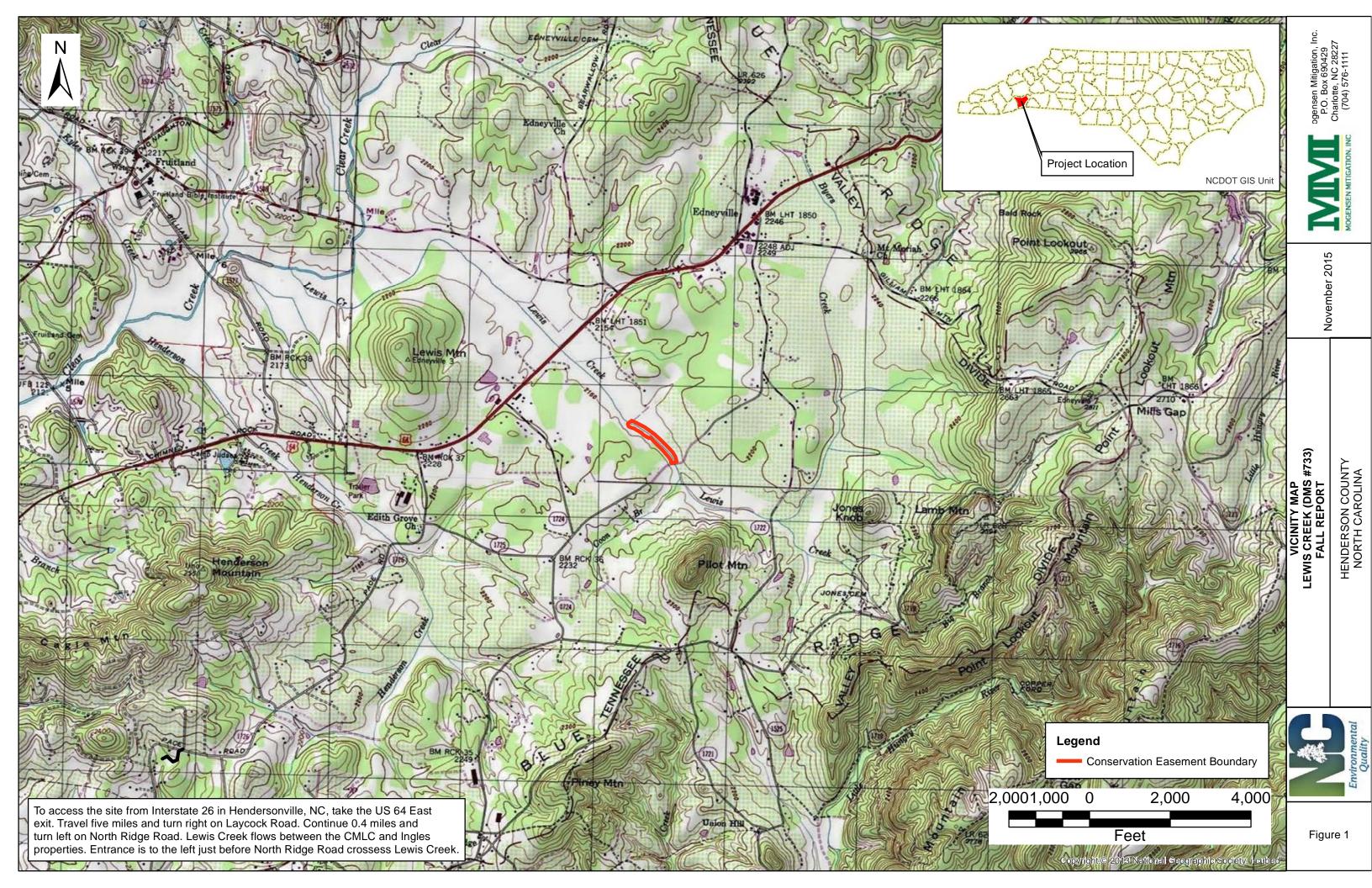
Doll, B. A., Grabow, G.L., Hall, K. A., Halley, J., Harman, W. A. Jennings, G.D., Wise, D.E., (2003). Stream Restoration: A Natural Channel Design Handbook. *NC Stream Restoration Institute, NC State University.*

Lee, Michael T.; Peet, Robert K.; Roberts, Steven D.; Wentworth, Thomas R. (2008). CVS-EEP Protocol for Recording Vegetation Version 4.2. - Based on a (2008) publication by the same authors - A flexible, multipurpose method for recording vegetation composition and structure. *Castanea* 63:262-274.

JJG March 2013. Monitoring Report Year #1

Rosgen, D. L. (1996). Applied River Morphology. *Wildland Hydrology Books*, Pagosa Springs, CO.

Weakley, A. S. (2012). Flora of the Southeastern and Mid-Atlantic States. Working draft of November 2012. University of North Carolina Herbarium (NCU), NC Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.


Miller, James H. (2003). Invasive Plants of Southern Forests. A field guide for identification and Control. *USDA Forest Service Southern Research station General Technical Report* SRS-62.

Wolman, M. G. (1954). A Method of Sampling Coarse River-Bed Material. *Transactions of American Geophysical Union* 35:951-956.

Dept. of the Army, Corps of Engineers (33 CFR Part 328) & US Environmental Protection Agency (40 CFR Parts 110, 112, 116 et al). Clean Water Rule: Definition of "Waters of the United States": Final Rule.

Various NCDMS Guideline Documents as noted.

Appendix A: Project Vicinity Map and Background Tables

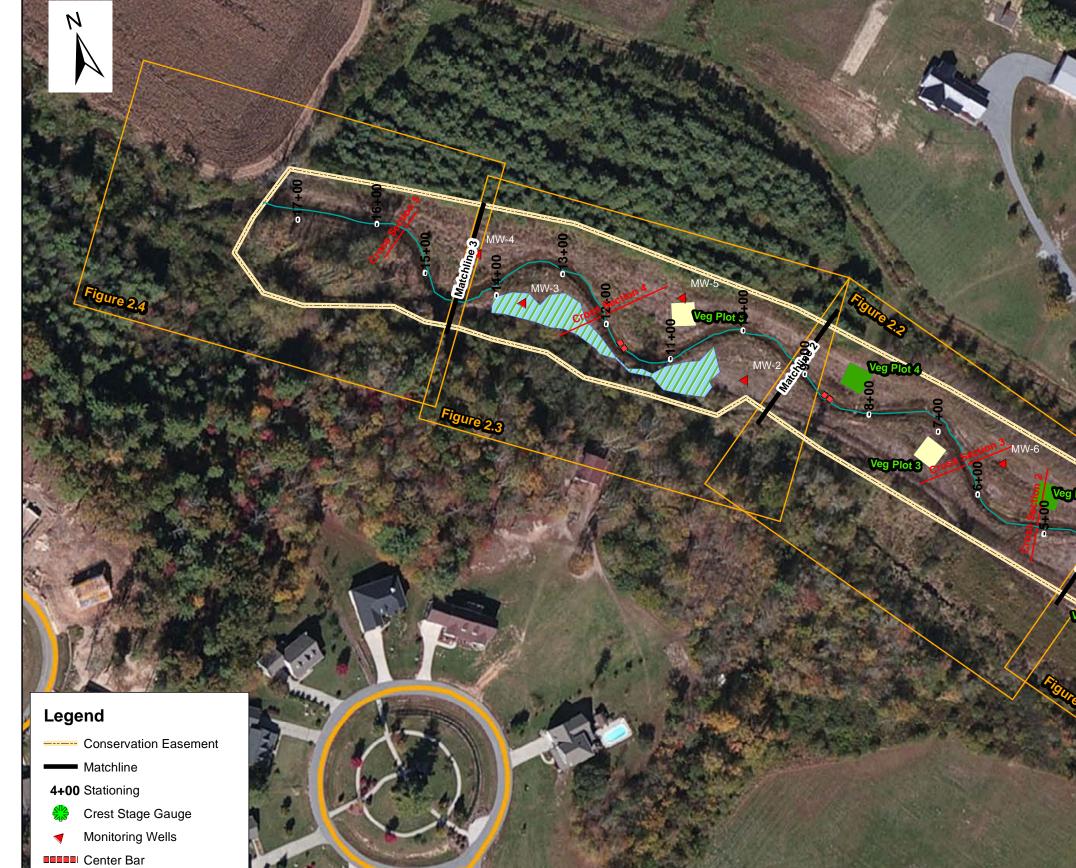
Table 1. Project Components and Mitigation Credits

				Mitiga	tion Credits				
	Str	eam	Riparian Wetland		Non-Riparian Wetland		Buffer	Nitrogen Nutrient Offset	Phosphorus Nutrient Offset
Туре	R	RE	R	RE	R	RE	N/A	N/A	N/A
Totals	1,750	N/A	N/A	N/A	N/A N/A		N/A	N/A	N/A
·				Project	Components				•
Project Component	Stationing	Stationing/Location		Existing Feet/Acres		Approach		Restoration Footage or Acres	Mitigation Ratio
Lewis Creek	0+00-	17+50	1,66	53 lf	Р	II	Restoration	1,750 lf	1:1
				Compone	nt Summation		·		
Restoration Level	Strea	ım (lf)		Riparian V	Riparian Wetland (ac)		Non- Riparian Wetland (ac)	Buffer (sqft)	Upland (ac)
			Rive	rine	Non-Ri	iverine			
Restoration (R)	1,750		N/	'A	N/	N/A		N/A	N/A
Totals	1,7	1,750		'A	N/	N/A		N/A	N/A
·				BMP	Elements				
Element	Loca	ation	P	urpose/Funct	ion		Ν	lotes	
N/A	N/	/A		N/A			N/A		
BMP Elements			•						
BR = Bioretent	ion Cell; SF =	- Sand Filter; S	W = Stormwat	er Wetland; V	WDP = Wet De	tention Pond	; DDP= Dry De	tention Pond;	FS = Filter Strip;
S= Grass Swale	e; LS = Level	Spreader; NI =	= Natural Infiltr	ation Area; F	B = Forested B	uffer			
			Vetland Mitiga						

Activity or Report	Data Collection Completed	Actual Completion or Delivery		
Mitigation Plan	September-07	December-07		
Final Design - Construction Plans	August-09	August-09		
Construction	September-10	April-11		
Temporary S&E mix applied to entire project area	April-11	April-11		
Permanent seed mix applied to reach/segments	April-11	April-11		
B&B plantings for reach/segments	April-11	April-11		
Bare root and livestake plantings for reach/segments	April-11	April-11		
Baseline Monitoring Document (Year 0 Monitoring - baseline)	July-11	December-11		
Section 404 Permit	September-07	February-08		
Year 1 Monitoring	June-12	November-12		
Year 2 Monitoring	NA	NA		
Year 3 Monitoring	October-13	February-13		
Year 4 Monitoring	September-14	November-14		
Year 5 Monitoring	September-15	December-15		

Table 3. Project Contacts Table

Designer	Jordan, Jones and Goulding, Inc.
Designer	•
	309 E. Morehead Street, Suite 110
	Charlotte, NC 28202
Matthew Clabaugh, PE	704-527-4106
Construction Contractor	Carolina Environmental Contracting, Inc.
	P.O. Box 1905
	Mt. Airy, NC 27030
Stephen James	336-320-3849
Planting Contractor	Carolina Environmental Contracting, Inc.
	P.O. Box 1905
	Mt. Airy, NC 27030
Stephen James	336-320-3849
Seeding Contractor	Carolina Environmental Contracting, Inc.
	P.O. Box 1905
	Mt. Airy, NC 27030
Stephen James	336-320-3849
Seed Mix Sources	Green Resources
	Rodney Montgomery
	336-215-3458
Nursery Stock Suppliers	Mellow Marsh Farm, Inc.
	919-742-1200
Monitoring Performers: Baseline-Year 1	Jordan, Jones and Goulding, Inc.
	309 E. Morehead Street, Suite 110
	Charlotte, NC 28202
	704-527-4106
Monitoring Performers: Year 3-5	Mogensen Mitigation, Inc.
	PO Box 690429
	Charlotte, NC 28202
Stream Monitoring, POC	Dish Masanan 704 576 1111
Vegetation Monitoring, POC	Rich Mogensen, 704-576-1111

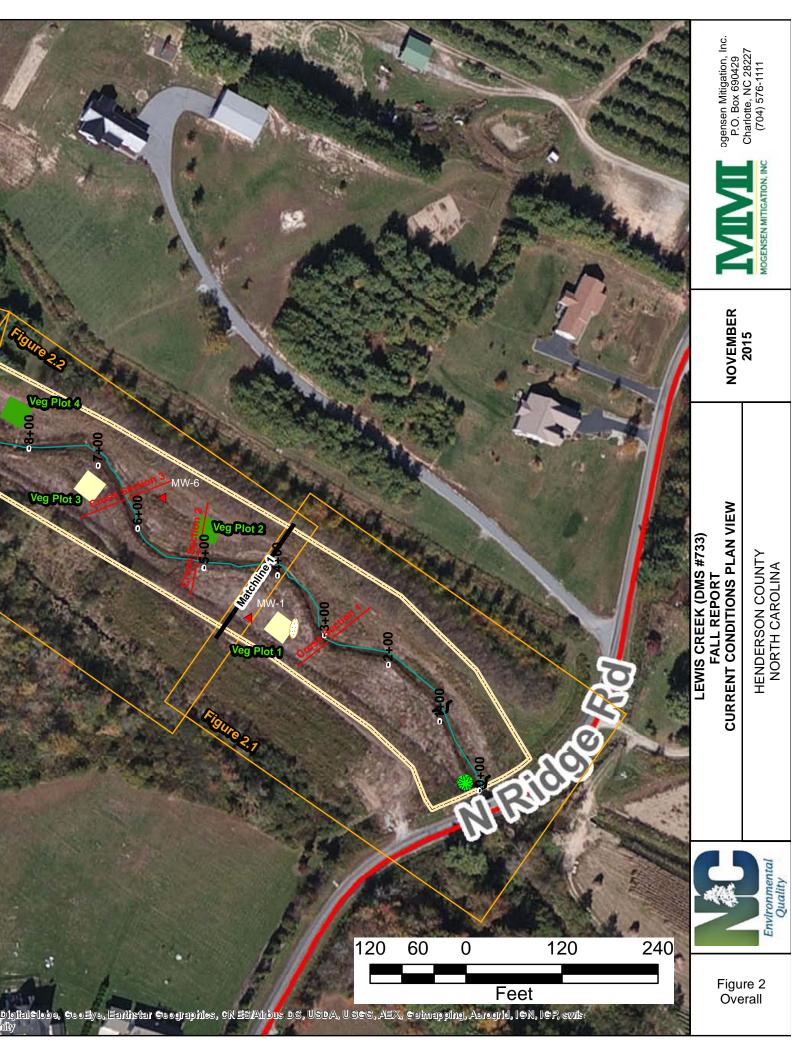

Table 4. Project Baseline Information and Attributes

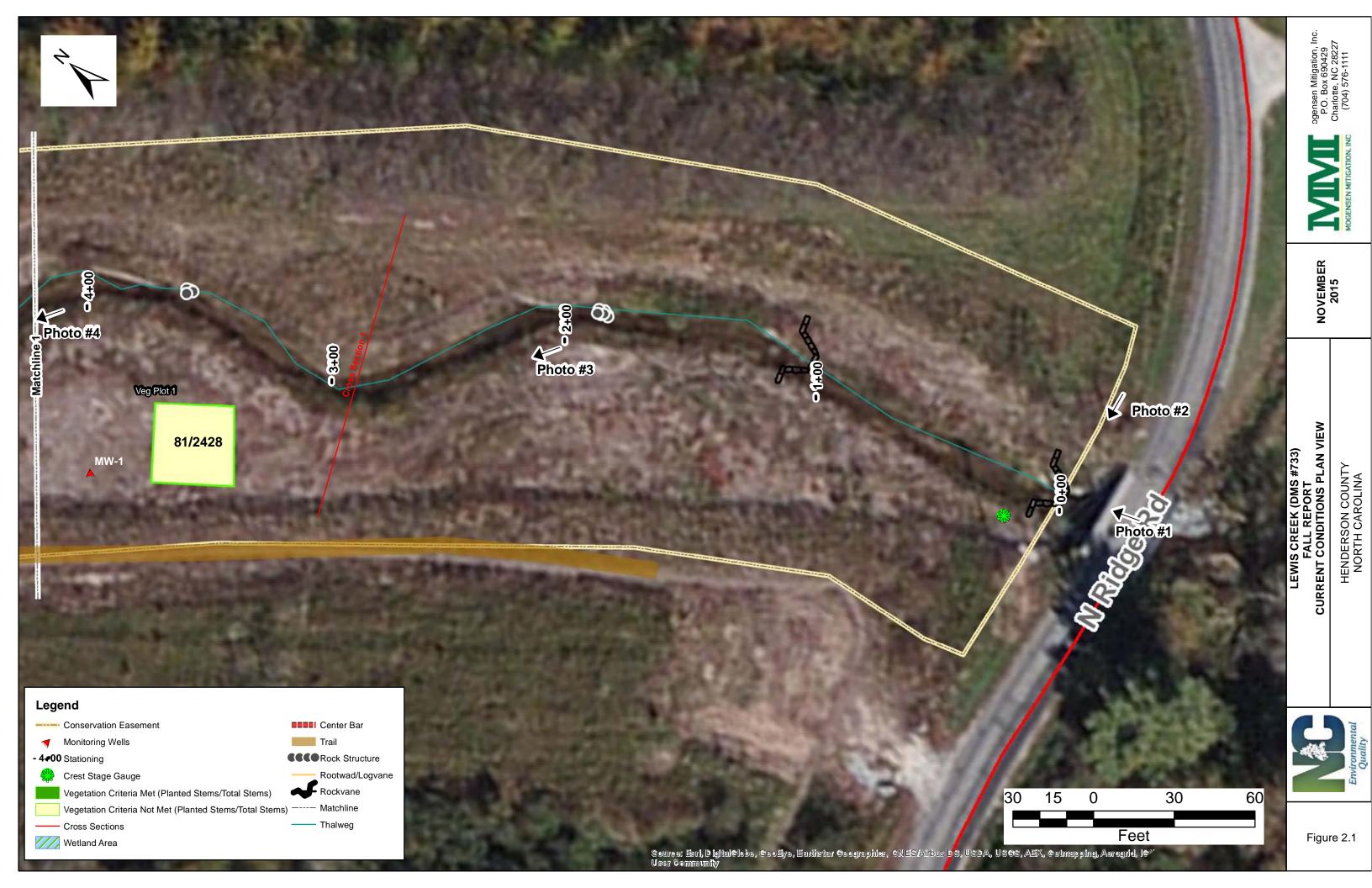
Project Information					
Project Name	Lewis Creek Stre	eam Restoratio	on		
Project County	Henderson County, NC				
Project Area (acres)	2.53				
	35°22'40.5"N				
Project Coordinates	82°20'56.1"W				
Project Watershed Summary Information	•				
Physiographic Region	Blue Ridge				
Project River Basin	French Broad				
USGS HUC for Project (8 digit)	06010105				
NCDWQ Sub-basin for Project and Reference	04-03-02				
Project Drainage Area (acres)	2,560				
Project Drainage Area Percentage of Impervious Area	0				
CGIA Land Use Classification	2.01				
Reach Summary Information*	2.01				
Parameters					
Length of reach (linear feet)	1,750				
Valley classification	VIII				
Drainage area (acres)	1.856				
NCDWQ stream identification score	N/A				
	N/A N/A				
NCDWQ Water Quality Classification	N/A Perennial				
Morphological Description (stream type) Evolutionaly trend	Agricultural				
Underlying mapped soils	Codorus and Ha	athoro loam			
Drainage Class	moderate to poo				
Soil Hydric status	Hatboro - hydri				
Slope	0.0030				
FEMA classification	100 year floodpl	ain			
Native vegetation community	Montane Alluvi	al Forest and	Piedmont/Mountain Alluvial Forest		
Tative vegetation community	intermediate con	nmunity type			
Percent composition of exotic invasive vegetation	U				
Regulatory Considerations			I		
Regulation	Applicable?	Resolved?	Supporting Documentation		
Waters of the United States - Section 404	Yes	Yes	DWR #08-00008		
Waters of the United States - Section 401	Yes	Yes	SAW-2008-0072		
Endangered Species Act	Yes	Yes	SAW-2008-0072		
Historic Preservation Act	N/A	N/A	N/A		
Costal Zone Managemetn Act (CZMA)/Costal Area Management Act (CAMA)	N/A	N/A	N/A		
FEMA Floodplain Compliance	Yes	No	Henderson County Floodplain Development Permit Issued 5/20/08; LOMR Approved 11/23/11		
Essential Fisheries Habitat	N/A	N/A	N/A		

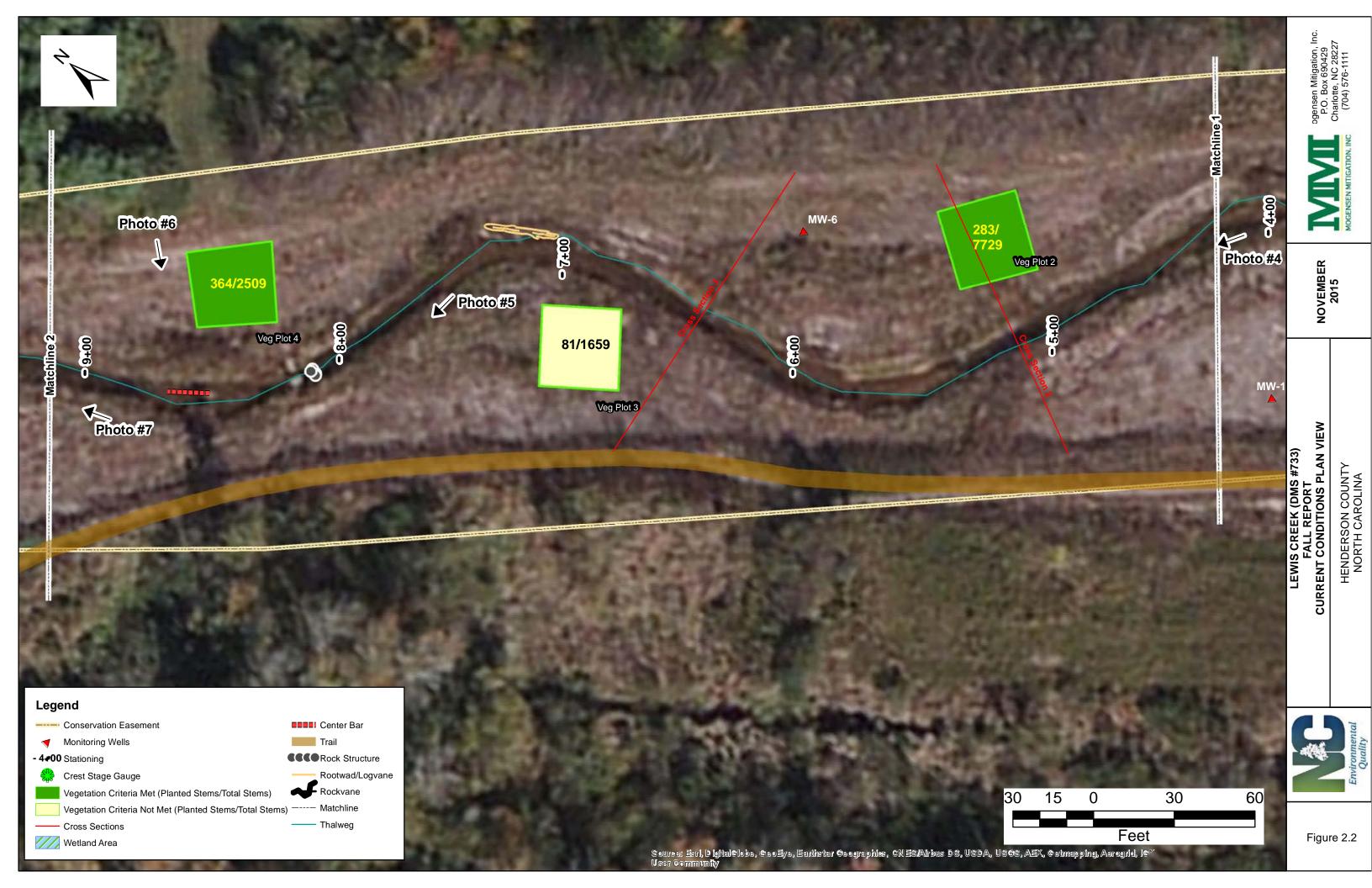
*This site is within the Mud Creek LWP and is in a Targeted Local Watershed

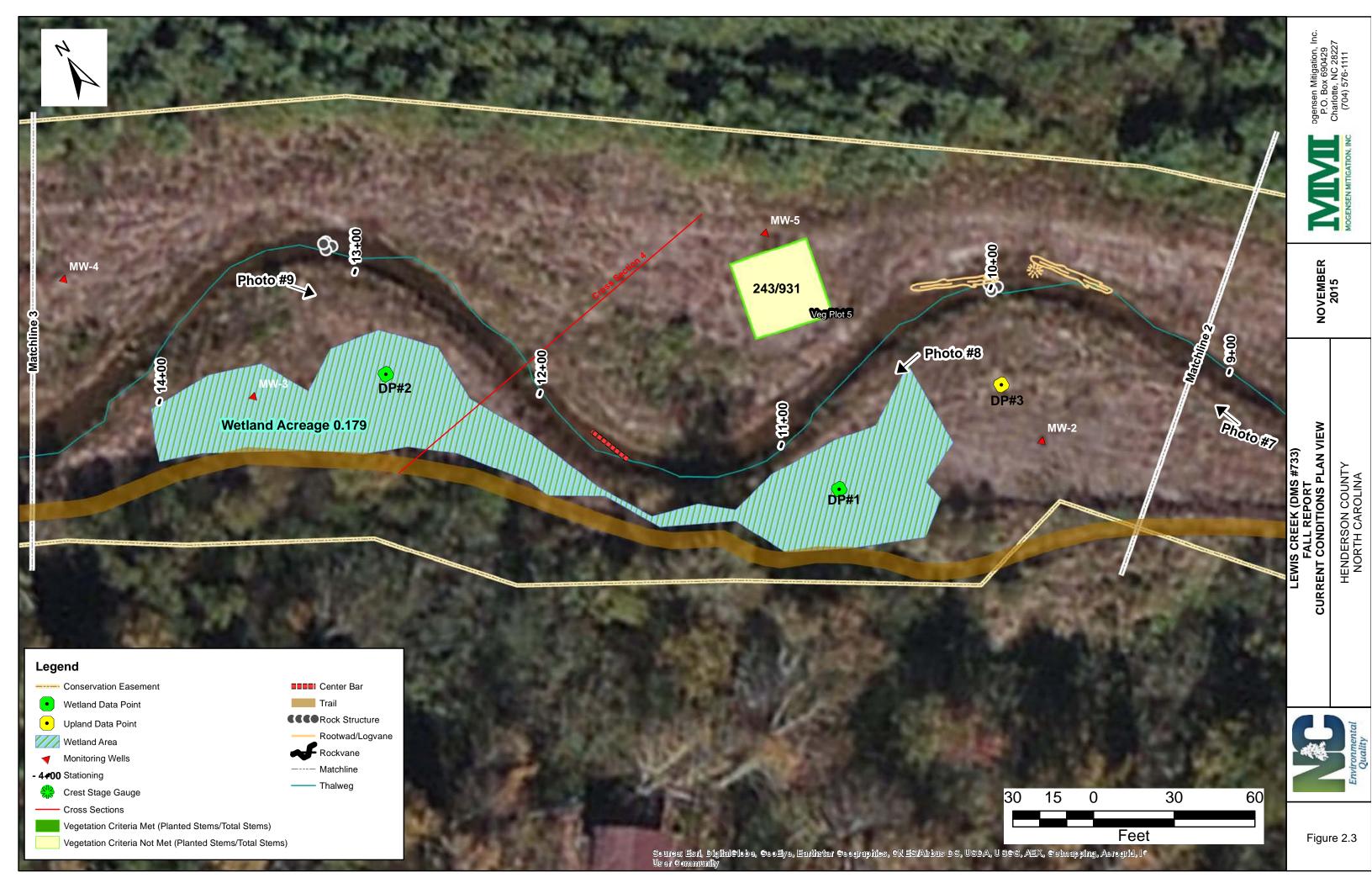
"N/A": items do not apply / "-": items are unavailable / "U": items are unknown

Appendix B: Visual Assessment Data






Cross Sections


Wetland Area

Vegetation Criteria Met Vegetation Criteria Not Met

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Numberin As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody	Footage with Stabilizing Woody	Adjusted % for Stabilizing Woody						
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%									
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	10	10			100%									
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	13	13							1		100%			
		2. Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	13	13			100%									
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	12	12			100%									
		2. Thalweg centering at downstream of meander (Glide)	11	11			100%									
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%						
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%						
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%						
				Totals	0	0	100%	0	0	100%						
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	13	13			100%									
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%									
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			100%									
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%									
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio <u>></u> 1.6 Rootwads/logs providing some cover at base-flow.	13	13			100%									

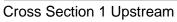

Table 5. Visual Stream Morphology Stability Assessment

Table 6. Vegetation Condition Assessment

Planted Acreage	2.53					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	N/A	0	0.00	0.0%
2. Low Stem Density Areas *	Woody stem densities clearly below target levels based on MY5 criteria.	0.1 acres	yellow polygon	0	0.00	0.0%
Total					0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
	0	0.00	0.0%			

Easement Acreage	14					
Vegetation Category	Definitions	Mapping Threshold (SF)	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	0	N/A	0	0.00	0.0%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	0	N/A	0	0.00	0.0%

MY 5, 2015

Cross Section 1 Downstream MY 5, 2015

Cross Section 2 Upstream

MY 5, 2015

Cross Section 2 Downstream MY 5, 2015

Cross Section 3 Upstream

MY 5, 2015

Cross Section 3 Downstream

MY 5, 2015

Cross Section 4 Upstream

MY 5, 2015

Cross Section 4 Downstream MY

- Cross Section 5 Upstream
- MY 5, 2015

Cross Section 5 Downstream MY 5, 2015

Veg Plot 1

MY 5, 2015

Veg Plot 2

MY 5, 2015

Veg Plot 3

MY 5, 2015

Veg Plot 4

Veg Plot 5

MY 5, 2015

Photo Point 1 (North)

MY 5, 2015

MY 5, 2015

Photo Point 1 (South)

MY 5, 2015

Photo Point 1 (West)

Photo Point 2 (East)

MY 5, 2015

Photo Point 2 (South)

MY 5, 2015

Photo Point 2 (West)

Photo Point 3 (North)

MY 5, 2015

Photo Point 3 (East)

MY 5, 2015

Photo Point 3 (South)

MY 5, 2015

Photo Point 3 (West)

Photo Point 4 (North)

MY 5, 2015

Photo Point 4 (East)

MY 5, 2015

Photo Point 4 (South)

MY 5, 2015

Photo Point 4 (West)

MY 5, 2015

Photo Point 5 (North)

MY 5, 2015

Photo Point 5 (East)

MY 5, 2015

Photo Point 5 (South)

MY 5, 2015

Photo Point 5 (West)

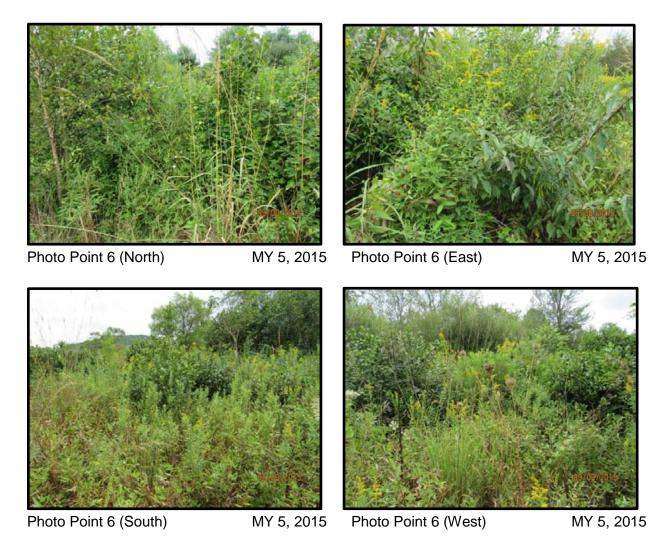


Photo Point 7 (North)

MY 5, 2015

Photo Point 7 (East)

MY 5, 2015

Photo Point 7 (South)

MY 5, 2015

Photo Point 7 (Mact)

Photo Point 7 (West)

MY 5, 2015

Photo Point 8 (North)

MY 5, 2015

Photo Point 8 (East)

Photo Point 8 (South)

MY 5, 2015

Photo Point 8 (West)

MY 5, 2015

Photo Point 9 (North)

MY 5, 2015

Photo Point (West)

MY 5, 2015

Photo Point 9 (South)

MY 5, 2015

Photo Point 9 (West)

Appendix C: Vegetation Plot Data

 Table 7. Vegetation Plot Criterion Attainment

Vegetation Plot ID	Vegetation Survival Threshold Met (Y/N)
Plot 1	Ν
Plot 2	Y
Plot 3	Ν
Plot 4	Y
Plot 5	N

*Note that when volunteer stems are considered, each plot has met the success criteria with the site exhibiting an overall density of 3,051 stems per acre in MY5.

Table 8. CVS Stem Counts Total & Planted

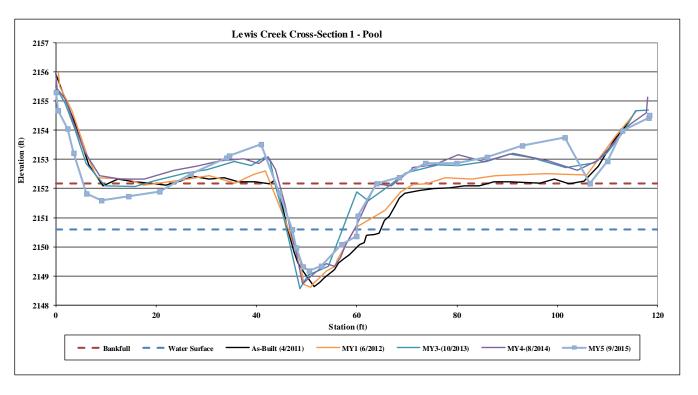
									Curr	ent Mean	5													Annua	al Means	s						
				Plot 1			Plot 2			Plot 3			Plot 4			Plot 5		M	Y5 (2015)	М	Y4 (2014)		M	Y3 (2013)	MY	1 (2011)		MY	0 (2010)	
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	T Pr	noLS	P-all	т
Acer rubrum	red maple	Tree			1	2	2 2	2 6						16	5		1	2	2	24	2	2 2	27	2	2	2 23	2	2	2	2	2	2
Acer saccharinum	silver maple	Tree									1									1			1									(
Alnus serrulata	hazel alder	Shrub			3			6			5			5	0	1 1	. 5	1	1	24			11									\square
Asimina triloba	pawpaw	Tree																		0				8	5	3 33	12	12	12	12	12	12
Baccharis spp.	eastern baccharis	Shrub																		0			1									1
Betula nigra	river birch	Tree		1 1	21	5	5 5	170			9	1		1 21	L	5 5	11	12	12	232	12	2 12	223	14	. 14	1 224	15	15	15	15	15	15
Carpinus caroliniana	American hornbeam	Tree																		0				1	. 1	L 1	. 2	2	2	3	3	3
Cornus amomum	silky dogwood	Shrub		1 1	L 5			1	2	2 2	12	4	ļ ,	4 7	7		3	7	7	28	7	7 7	23	9	9	24	9	9	9	9	9	9
Diospyros virginiana	common persimmon	Tree																		0						1						
llex opaca	American holly	Tree																		0							5	5	5	5	5	5
Liriodendron tulipifera	tuliptree	Tree						1				1		1 1	L			1	1	2	1	1 1	. 1	1	. 1	L 1	. 4	4	4	4	4	4
Platanus occidentalis	American sycamore	Tree										1		1 1	L			1	1	1	1	1 1	. 1	1	. 1	1 3	1	1	1	2	2	2
Quercus falcata	southern red oak	Tree										1		1 1	L			1	1	1		3 3	3	3	3	3 3	5 5	5	5	5	5	5
Rhus glabra	smooth sumac	Shrub										1		1 1	L			1	1	1	1	1 1	. 3	1	. 1	1 2	2 1	1	1	1	1	1
Robinia pseudoacacia	black locust	Tree			5															5			5			4						
Salix cinerea	gray willow	Tree			17			3			9			4	1					33			42									
Salix nigra	black willow	Tree			8			4			5			5	5		3			25			27			37	,					
		Stem count	: :	2 2	2 60	7	7 7	/ 191	2	2 2	41	9) !	9 62	2	6 6	23	26	26	377	27	7 27	368	40	40	356	5 56	56	56	58	58	58
		size (ares)		1			1			1			1			1			5			5			5			5			5	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.12			0.12			0.12			0.12		(0.12	
		Species count	: :	2 2	2 7	2	2 2	2 7		1 1	6	e	5 (5 10		2 2	5	8	8	17	7	7 7	13	9	ç	9 12	10	10	10	10		
		Stems per ACRE	8:	1 81	2428	283	283	3 7729	81	81	1659	364	36	4 2509	24	3 243	931	210	210	3051	219	219	2978	324	324	1 2881	453	453	453	469	469	469
	Exceeds requirements	s by 10%																														
	Exceeds requirements	, but by less tha	an 10%																													
	Fails to meet requirer	nents, by less th	nan 10%																													
	Fails to meet requirer																															

Lewis Creek_733. December 2015. Monitoring Year 5 of 5.

Appendix D: Stream Survey Data

Appendix D: Stream Survey Data Figure 4.0 Cross-section with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 5 of 5

Project Name	Lewis Creek	
EEP Project Number	733	
Cross-Section ID	XS-1, Pool, +	-292.52
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		2152.17
Bankfull Cross-Section	al Area (ft ²)	247.80
Bankfull Width (ft)		23.10
Flood Prone Area Elevat	ion (ft)	2154.83
Flood Prone Width (ft)		120.00
Bankfull Mean Depth (f	t)	1.06
Bankfull Max Depth (ft)		2.66
W/D Ratio		21.79
Entrenchment Ratio		5.19
Bank Height Ratio		1.00



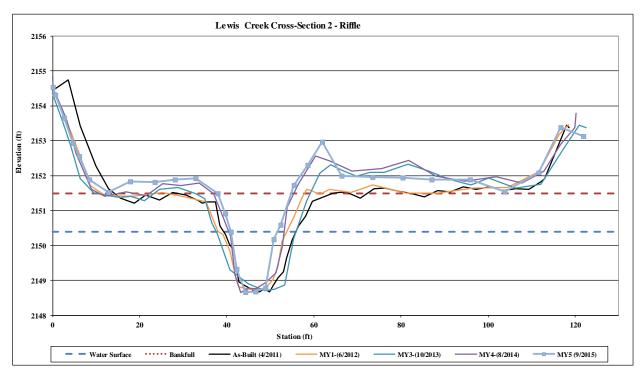
XS-1: Upstream

XS-1: Downstream

Station	Elevation	Notes
0.00	2155.30	LPIN
0.43	2154.68	xs 1
2.35	2154.05	xs 1
4.50	2153.41	xs 1
7.57	2152.02	xs 1
10.01	2151.79	xs 1
15.90	2151.93	xs 1
21.72	2152.08	xs 1
28.37	2152.70	xs 1
35.09	2153.25	xs 1
36.04	2153.32	xs 1
41.85	2153.71	LTB
46.01	2152.06	xs 1
48.14	2150.80	LEW
49.44	2150.17	xs 1
50.30	2149.51	THW
52.02	2149.38	xs 1
53.96	2149.53	xs 1
58.52	2150.30	xs 1
60.97	2150.57	REW
61.76	2151.25	xs 1
64.95	2152.37	RTB
69.99	2152.58	xs 1
74.70	2153.06	xs 1
81.40	2153.06	xs 1
86.99	2153.27	xs 1
94.55	2153.66	xs 1
102.53	2153.94	xs 1
107.97	2152.37	xs 1
111.02	2153.14	xs 1
114.53	2154.17	xs 1
119.18	2154.63	xs 1
119.83	2154.71	RPIN

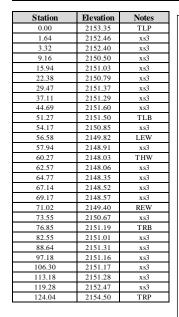
Appendix D: Stream Survey Data Figure 4.1 Cross-section with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 5 of 5

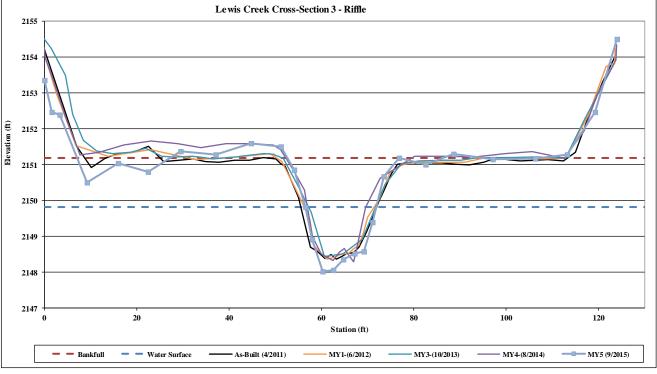
Project Name	Lewis Cre	ek
EEP Project Number	733	
Cross-Section ID	XS-2, Riff	le +511.9
Survey Date	9/2015	
SUMM	ARYDATA	
Bankfull Elevation (ft)		2151.48
Bankfull Cross-Sectional	Area (ft ²)	330.90
Bankfull Width (ft)		23.93
Flood Prone Area Elevatio	n (ft)	2154.17
Flood Prone Width (ft)		120.00
Bankfull Mean Depth (ft)		1.68
Bankfull Max Depth (ft)		2.69
W/D Ratio		14.24
Entrenchment Ratio		5.02
Bank Height Ratio		1.00


Station	Elevation	Notes
0.00	2154.54	TLP
0.63	2154.31	xs2
2.68	2153.65	xs2
4.64	2152.94	xs2
6.18	2152.56	xs2
8.39	2151.88	xs2
12.82	2151.53	xs2
17.89	2151.83	xs2
23.40	2151.81	xs2
28.16	2151.90	xs2
32.83	2151.92	xs2
37.95	2151.48	TLB
39.64	2150.91	xs2
40.97	2150.39	LEW
42.24	2149.33	xs2
44.31	2148.66	xs2
46.59	2148.69	xs2
48.86	2148.80	THW
50.85	2150.18	xs2
52.37	2150.60	xs2
55.37	2151.73	xs2
58.60	2152.31	xs2
61.88	2152.98	TRB
66.46	2152.00	xs2
73.53	2151.97	xs2
80.40	2151.94	xs2
87.12	2151.88	xs2
95.82	2151.88	xs2
103.86	2151.55	xs2
111.64	2152.08	xs2
116.73	2153.38	xs2
121.89	2153.14	TRP

XS-2: Upstream

XS-2: Downstream


Appendix D: Stream Survey Data Figure 4.2 Cross-section with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 4 of 5


Project Name	Lewis Cree	ek
EEP Project Number	733	
Cross-Section ID	XS-3, Riffl	e, +641.70
Survey Date	9/2015	
SUMMA	ARYDATA	
Bankfull Elevation (ft)		2151.186
Bankfull Cross-Sectional	Area (ft ²)	372.50
Bankfull Width (ft)		25.58
Flood Prone Area Elevatio	n (ft)	2154.35
Flood Prone Width (ft)		120.00
Bankfull Mean Depth (ft)		0.79
Bankfull Max Depth (ft)		3.16
W/D Ratio		32.38
Entrenchment Ratio		4.69
Bank Height Ratio		1.00

XS-3: Downstream

Appendix D: Stream Survey Data Figure 4.3 Cross-section with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 5 of 5

Project Name	Lewis Cre	ek
EEP Project Number	733	
Cross-Section ID	XS-4, Riff	le 1+214.24
Survey Date	9/2015	
SUMM	IARY DATA	
Bankfull Elevation (ft)		2150.16
Bankfull Cross-Sectiona	l Area (ft ²)	62.30
Bankfull Width (ft)		279.90
Flood Prone Area Elevati	on (ft)	2153.59
Flood Prone Width (ft)		150.00
Bankfull Mean Depth (ft)		0.58
Bankfull Max Depth (ft)		3.43
W/D Ratio		482.59
Entrenchment Ratio		0.54
Bank Height Ratio		1.00

Station

0.00

6.48

9.94

13.51

20.58

27.68

33.84

41.74

49.36

53.41

56.28

57.26

59.02

60.36

62.69

64.21

66.40

67.53

69.50

71.04

73.49

75.80

80.99

87.71

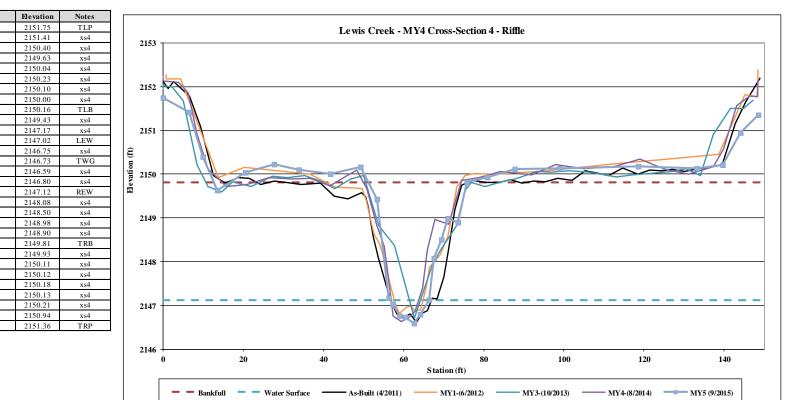
98.88

118.58

133.03

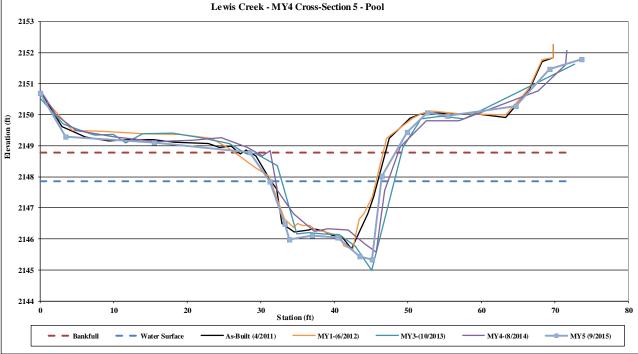
139.64

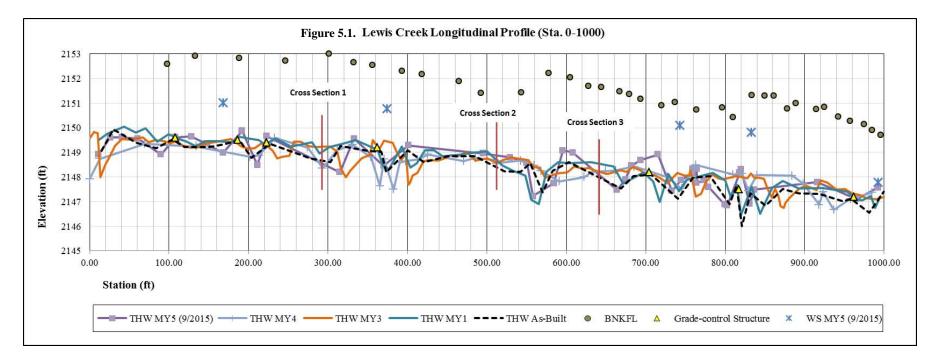
144.15

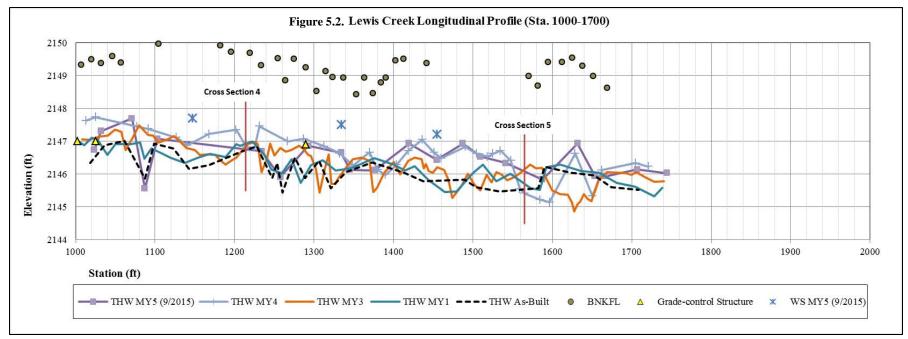

148.51

XS-4: Downstream

Appendix D: Stream Survey Data Figure 4.4 Cross-section with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 5 of 5

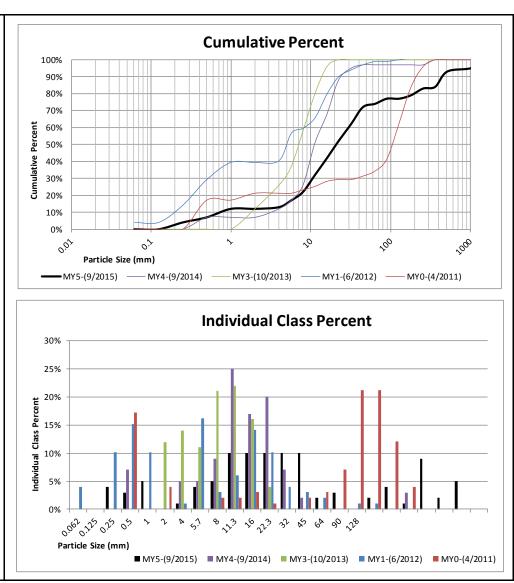

Project Name	Lewis Creek	
EEP Project Number	733	
Cross-Section ID	XS-5, Pool, 1+564.9	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)	2148.7	8
Bankfull Cross-Sectional Ar	rea (ft ²) 210.90)
Bankfull Width (ft)	24.16	
Flood Prone Area Elevation (f	t) 2152.1	3
Flood Prone Width (ft)	75.00	
Bankfull Mean Depth (ft)	2.14	
Bankfull Max Depth (ft)	3.35	
W/D Ratio	11.29	
Entrenchment Ratio	3.10	
Bank Height Ratio	1.00	

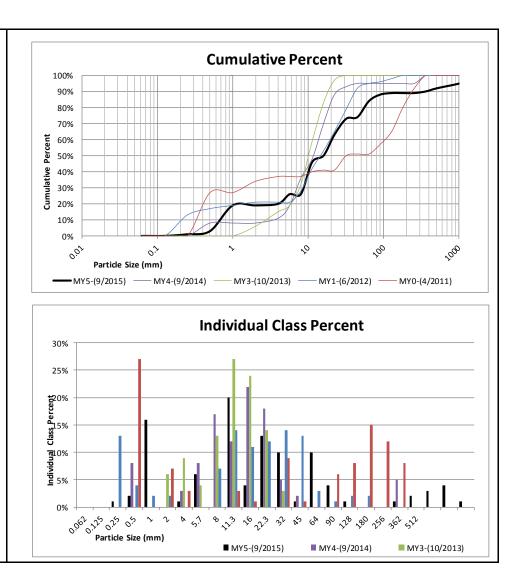




XS-5: Downstream

Station	Elevation	Notes
0.00	2150.71	TLP
3.42	2149.30	xs5
15.49	2149.11	x s5
28.45	2148.78	TLB
31.22	2147.86	LEW
33.20	2146.50	xs5
33.84	2145.99	x s5
36.99	2146.11	xs5
40.38	2146.04	x s5
43.38	2145.43	THW
45.12	2145.34	x s5
46.45	2148.02	xs5
49.88	2149.44	x s5
52.61	2150.06	TRB
55.38	2149.95	x s5
64.65	2150.27	xs5
69.24	2151.47	xs5
73.58	2151.78	TRP




Appendix D: Stream Survey Data Figure 6.0 Pebble Count Plots with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 5

	Feature	e: Riffle (X		(5-(9/201	-	
		Size	MI	Item	Cum	
Description	Material	(mm)	Total #	%	Cum %	
Silt/Clay	silt/clay	0.062	0	0%	0%	
	very fine sand	0.125	0	0%	0%	
	fine sand	0.250	4	4%	4%	
Sand	medium sand	0.50	3	3%	7%	
	coarse sand	1.00	5	5%	12%	
	very coarse sand	2.0	0	0%	12%	
	very fine gravel	4.0	1	1%	13%	
	fine gravel	5.7	4	4%	17%	
	fine gravel	8.0	5	5%	22%	
Gravel	medium gravel	11.3	10	10%	32%	
	medium gravel	16.0	10	10%	42%	
	course gravel	22.3	10	10%	52%	
	course gravel	32.0	10	10%	62%	
	very coarse gravel	45	10	10%	72%	
	very coarse gravel	64	2	2%	74%	
	small cobble	90	3	3%	77%	
Cobble	medium cobble	128	0	0%	77%	
Coddle	large cobble	180	2	2%	79%	
	very large cobble	256	4	4%	83%	
	small boulder	362	1	1%	84%	
Boulder	small boulder	512	9	9%	93%	
Boulder	medium boulder	1024	2	2%	95%	
	large boulder	2048	5	5%	100%	
Bedrock	bedrock	40096	0	0%	100%	
TOTAL %	of whole count	-	100	100%	100%	
<i>a</i>						
D50	mary Data 21.0					
D30	362.0					
D95	1024.0					

Appendix D: Stream Survey Data Figure 6.1 Pebble Count Plots with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 5

	Project 1	Name: Lewis C	reek		
		Reach: 2			
	Featu	ire: Riffle (XS3	ŕ	B 75 (01201	-
Deserver	M-4	C! ()		MY5-(9/201	
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	0	0%	0%
	very fine sand	0.125	0	0%	0%
~ -	fine sand	0.250	1	1%	1%
Sand	medium sand	0.50	2	2%	3%
	coarse sand	1.00	16	16%	19%
	very coarse sand	2.0	0	0%	19%
	very fine gravel	4.0	1	1%	20%
	fine gravel	5.7	6	6%	26%
	fine gravel	8.0	0	0%	26%
	medium gravel	11.3	20	20%	46%
Gravel	medium gravel	16.0	4	4%	50%
	course gravel	22.3	13	13%	63%
	course gravel	32.0	10	10%	73%
	very coarse gravel	45	1	1%	74%
	very coarse gravel	64	10	10%	84%
	small cobble	90	4	4%	88%
G 111	medium cobble	128	1	1%	89%
Cobble	large cobble	180	0	0%	89%
	very large cobble	256	0	0%	89%
	small boulder	362	1	1%	90%
D 11	small boulder	512	2	2%	92%
Boulder	medium boulder	1024	3	3%	95%
	large boulder	2048	4	4%	99%
Bedrock	bedrock	40096	1	1%	100%
TOTAL %	of whole count	-	100	100%	100%
			•		
Sumn	nary Data				
D50	16.0				
D84	64.0				
D95	1024.0				

Appendix D: Stream Survey Data Figure 6.2 Pebble Count Plots with Annual Overlays Lewis Creek Stream Restoration/DMS Project No. 733 Monitoring Year 5

	Project I	Name: Lewis C	reek			
	Re	each: 3 (XS4)				
			1		-	Cumulative Percent
Decorintic	Material	Size (mm)		MY5-(9/201 Item %		
Description Silt/Clay		0.062	10121 #	1%		
Sill/Clay	silt/clay	0.082	1		1% 2%	90%
	very fine sand		1	1%		80%
C I	fine sand	0.250	1	1%	3%	
Sand	mediumsand	0.50	2	2%	5%	t 60% 50%
	coarse sand	1.00	22	22%	27%	ž 50%
	very coarse sand	2.0	4	4%	31%	
	very fine gravel	4.0	4	4%	35%	
	fine gravel	5.7	4	4%	39%	§ 20%
	fine gravel	8.0	3	3%	42%	10%
	medium gravel	11.3	20	20%	62%	
Gravel	medium gravel	16.0	2	2%	64%	ad a a a a a a a a a a a a a a a a a a
	course gravel	22.3	10	10%	74%	Particle Size (mm)
	course gravel	32.0	4	4%	78%	
	very coarse gravel	45	4	4%	82%	
	very coarse gravel	64	11	11%	93%	
	small cobble	90	2	2%	95%	
Cobble	medium cobble	128	4	4%	99%	Individual Class Percent
	large cobble	180	0	0%	99%	
	very large cobble	256	0	0%	99%	30%
	small boulder	362	0	0%	99%	
Boulder	small boulder	512	0	0%	99%	25%
	medium boulder	1024	0	0%	99%	<u><u><u></u></u> <u><u></u> <u></u> <u></u> <u></u> <u></u></u></u>
	large boulder	2048	1	1%	100%	
Bedrock	bedrock	40096	0	0%	100%	<u>a</u> %15%
TOTAL % o	of whole count	-	100	100%	100%	
	ary Data					10% PU 5%
D50	10.0 55.0					
D84 D95	55.0 90.0					
	20.0					
						ູດອີ່, ¹ ້ ດີ ວິ່ ໄ ^{້ ໂ} ່ ^{5 ໂ} ້ ^{5 ໂ} ້ ^{5 ໂ} ້ ³ ¹ ² ² ² ³ ² ² ³ ² ³ ² ³ ³ ³ ¹ ³ ³ ³ ³ ³ ¹ ³ ³ ³ ³ ³ ¹ ³ ¹ ³ ¹ ³ ¹ ³ ¹
						■ MY5-(9/2015) ■ MY4-(9/2014) ■ MY3-(10/202

							Арр	endix D): Str	eam S	Survey	Data													
							Tabl	e 9.0 B	aseli	ne-Sti	ream D	ata Sum	mary	Tables	;										
						į	Lewis	Creek	Stre	am R	estorat	tion/DM	S Pro	ject: 73	3										
Parameter	Gauge		Regional Curve			Pre-H	Existing	g Conditio	on			Refere	nce R	each Data	1			Design				Monitori	ng Baselin	e	
Dimension and Substrate - Riffle	-	LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Bankfull Width (ft)	-	-	-		221.11	-	-	22.21	-	3.00	15.44	-	-	15.90	-	-	-	24.71	-	22.65	23.98	23.81	25.38	1.08	5.00
Floodprone Width (ft)	-	-	-	-	>100	-	-	-	-		100.00	-	-	100.00	-	-	-	60.00	-	70.91	114.25	114.93	148.86	28.02	5.00
Bankfull Mean Depth (ft)	-	-	-		2.12	-	-	2.56	-	3.00	1.49	-	-	1.54	-	-	-	2.25	-	1.60	1.96	1.89	2.60	0.39	5.00
Bankfull Max Depth (ft)	-	-	-	-	3.55	-	-	4.58	-	3.00	2.40	-	-	2.70	-	-	-	3.39	-	2.64	3.55	3.09	5.87	1.31	5.00
Bankfull Cross-Sectional Area (ft2)	-	-	-		51.41	-	-	55.22	-	3.00	23.74	-	-	23.76	-	-	-	55.50	-	36.31	47.15	44.25	65.97	11.29	5.00
Width/Depth Ratio	-	-	-	-	8.25	-	-	11.51	-	3.00	10.03	-	-	10.67	-	-	-	11.00	-	9.76	12.56	12.36	14.62	1.94	5.00
Entrenchment Ratio	-	-	-	-	-	>2.2	-	-	-	6.00	6.29	-	-	6.48	-	-	-	2.40	-	2.79	4.79	4.95	6.25	1.25	5.00
Bank Height Ratio	-	-	-	-	1.53	1.53 1.79 1			1.25	-	-	1.25	-	-	-	1.00	-	1.00	1.00	1.00	1.00	0.00	5.00		
Pattern																									
Channel Beltwidth (ft)	-	-	-	-	22.00	-	-	51.00	-	26.00	-	52.00	-		-	-	49.42	-	98.83	49.42	-	-	98.83	-	-
Radius of Curvature (ft)	-	-	-	-	14.37	-	-	69.28	-	29.00	8.50	-	-	15.80	-	-	49.42	-	76.60	49.42	-	-	76.60	-	-
Rc:Bankfull width (ft/ft)	-	-	-	-	0.7	-	-	2.75	-	29.00	0.54	-	-	1.01	-	-	2.00	-	3.10	2.00	-	-	3.10	-	-
Meander Wavelength (ft)	-	-	-	-	40	-	-	163	-	26.00	30.00	3.32	-	84.00	-	-	197.67	-	296.50	197.67	-	-	296.50	-	-
Meander Width Ratio	-	-	-	-	2	-	-	6.47	-	26.00	-	-	-		-	-	2.00	-	4.00	2.00	-	-	4.00	-	-
Profile																									
Riffle Length (ft)	-	-	-	-	7.64	-	-	21.50	-	9.00	-		-	-	-	-	9.70	-	121.90	11.75	34.18	-	58.75	-	-
Riffle Slope (ft/ft)	-	-	-	-	0.00	-	-	0.02	-	9.00	-	1.74	-	-	-	-	2.40	-	2.88	0.01	0.02	-	0.05	-	-
Pool Length (ft)	-	-	-	-	6.90	-	-	294.11	-	19.00	-	-	-	-	-	-	30.30	-	125.40	14.92	19.39	-	23.86	-	-
Pool Max Depth (ft)	-	-	-	-	3.5	-	-	4.7	-	3.0	-	-	-	-	-	-	4.9	-	5.4	0.5	0.8	-	1.2	-	-
Pool Spacing (ft)	-	-	-	-	35.60	-	-	84.58	-	16.00	42.00	-	-	163.00	-	-	76.30	-	172.00	62.64	188.30	-	277.42	-	-
Transport Parameters																	_								
Reach Shear Stress (competency) lb/ft ²	-	-	-	-	-	0.42	-	-	-	-	-	-	-	-	-	-	-	0.33	-	-	-	-	-	-	-
Max part size (mm) mobilized at bankful	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	22.16	-	79.91	-	-	-	-	-	-
Stream Power (transport capacity) W/m ²	-	-	-	-		_	-	_		_	_	_		_			_		_		_	-	_	_	_
Additional Reach Parameters	•		1	•	1 .		-	-	<u> </u>			-	<u> </u>	-		1		-	-						-
Rosgen Classification	-	-	-	-	T		E5/	C5	_				E5		_	_		E5/C5		1			C5		
Bankful Velocity (fps)	-	-	-	-			2.0						5.50					2.52					1.46		
Bankful Discharge (cfs)	-	-	-	-			14	10					131					140					-		
Valley Length (ft)	-	-	-	-									-					1326					379		
Channel Thalweg Length (ft)	-	-	-	-	+								_					1750					750		
Sinuosity (ft)	-	-	-	-	+		1.				-		1.30					1.32					.29		
Water Surface Slope (ft/ft)	-	-	-	-			0.0						0.010	-				0.0025					.29		
BF slope (ft/ft)	-	-	-	-	+								-					0.0023					-		
Bankful Floodplain Area (acres)	-	-	-	-	+								-					-					-		
% of Reach with Eroding Banks	-	-	-	-	+																		-		
Channel Stability or Habitat Metric	-	-	-	-	+								-					-					-		
Biological or Other	-	-	-	-	1						-		-										-		
biological or Other	-	-	-	-							1		-					-					-		

Appendix D. Stream Survey Data Table 9.1 Baseline Stream Data Summary (Substrate, Bed, Bank and Hydrologic Containment Parameter Distributions) Lewis Creek Stream Restoration/DMS Project No. 733													
rameter Pre-Existing Condition Reference Reach Data Design As-built/Baseline													
Ri%/Ru%/P%/G%/S%	*	*	*	20/25/27/22/4 0.01/0.53/0.13/0.29/0.02									
d16 / d35 / d50 / d84 / d95 (mm)	0.08/0.17/0.28/5.02/13.14	0.12/0.30/0.75/64.00/150.00	d50=17.65	/* /* /19.30/110.18/126.39									
Entrenchment Class<1.5/1.5-1.99/2.0- 4.9/5.0-9.9/>10 $2.0 > \%100 < 4.9 (2.2)$ $5.0 > \%100 < 9.9 (6.29, 6.48)$ $2.0 > \%100 < 4.9 (2.40)$ $2.0 > \%100 < 9.9 (2.79, 6.25)$													
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0	1.5 > %100 < 1.99 (1.53,1.79)	1.20 > %100 < 1.49(1.25)	%100 < 1.20 (1.0)	%100 < 1.20 (1.0)									

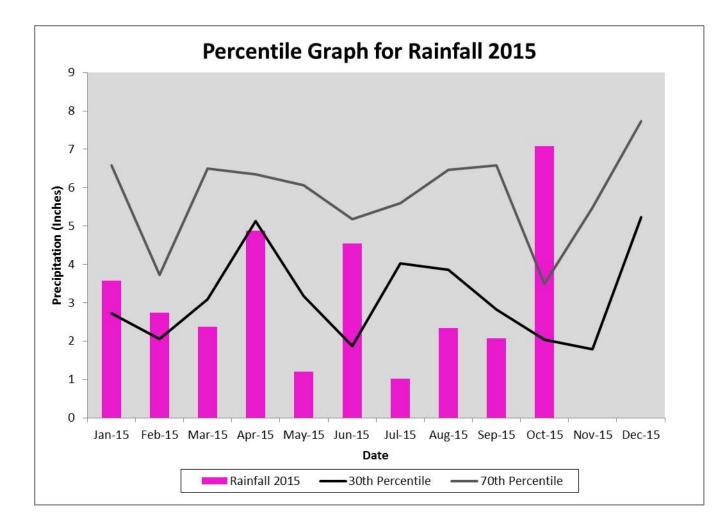
*2007 restoration plan did not include data for these parameters.

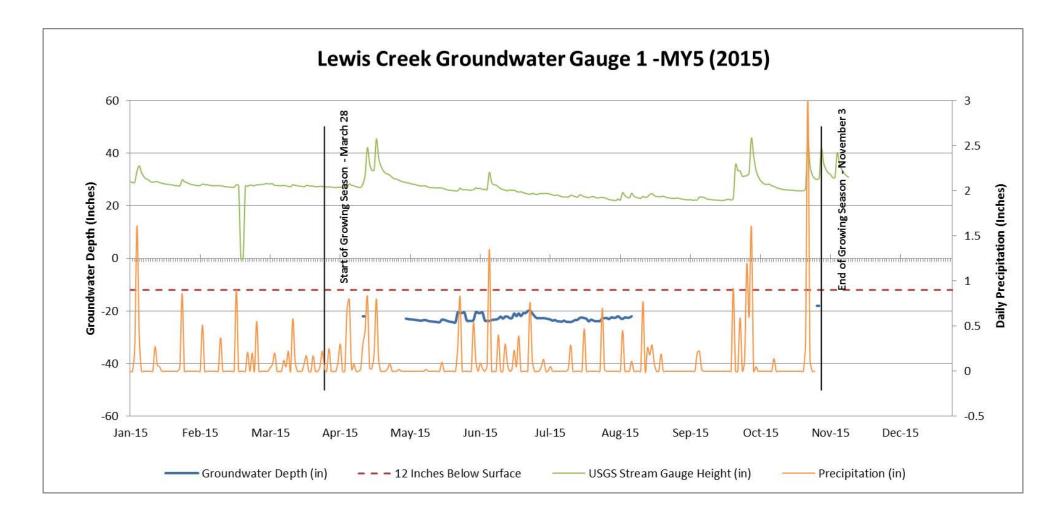
			Monitorin		-Section N	ey Data Iorpholog Project N						
PARAMETER			Cross-Sect	tion 1 (Pool)					Cross-Secti	on 2 (Riffle))	
DIMENSION	Baseline	MY1-2011	MY2-2012	MY3-2013	MY4-2014	MY5-2015	Baseline	MY1-2011	MY2-2012	MY3-2013	MY4-2014	MY5-2015
Bankfull Width (ft)	23.4	25.3	N/A	20.5	22.77	23.10	22.70	23.2	N/A	23.3	26.46	23.93
Floodprone Width (ft)	114.9	114.0	N/A	117.2	117.79	120.00	114.20	116.1	N/A	123.6	119.05	120.00
Bankfull Mean Depth		1.6	N/A	1.5	1.71	1.06	1.60	1.5	N/A	1.3	1.26	1.68
Bankfull Max Depth (ft)	3.2	3.3	N/A	3.3	3.42	2.66	3.10	2.6	N/A	2.6	2.73	2.69
Bankfull Cross-sectional Area (ft ²)	44.3	40.6	N/A	31.1	38.85	36.00	36.30	34.5	N/A	29.3	33.28	28.10
Bankfull Width/Depth Ratio	12.4	15.8	N/A	13.5	13.35	21.79	14.20	15.5	N/A	18.5	21.04	14.24
Bankfull Entrenchment Ratio	4.9	4.5	N/A	5.7	5.17	5.19	5.0	5.0	N/A	5.3	4.50	5.02
Bankfull Bankheight Ratio	1.0	1.3	N/A	1.0	1.27	1.0	1.0	1.0	N/A	1,0	1.00	1.0
Cross Sectional Area between end pins (ft ²)	46.8	46.8	N/A	266.2	247.4	247.8	347.1	347.1	N/A	334.9	368.9	330.9
d50 (mm)	0.2	2.0	N/A	N/A	N/A	N/A	105.40	5.0	N/A	7.0	11.0	21.0
		•						•	•		•	
PARAMETER			Cross-Sect	ion 3 (Riffle)				Cross-Secti	on 4 (Rifle)		
DIMENSION	Baseline			MY3-2013		MY5-2015	Baseline		MY2-2012			MY5-2015
Bankfull Width (ft)	24.7	25.8	N/A	25.0	21.07	25.58	23.80	23.4	N/A	19.3	19.78	26.44
Floodprone Width (ft)	122.3	120.3	N/A	99.7	119.07	120.00	148.90	147.8	N/A	130.7	143.47	150.00
Bankfull Mean Depth	1.7	1.5	N/A	1.5	1.42	0.79	2.00	1.8	N/A	0.9	1.90	0.58
Bankfull Max Depth (ft)	2.6	2.6	N/A	2.6	2.49	3.16	3.00	2.9	N/A	2.1	3.26	3.43
Bankfull Cross-sectional Area (ft ²)	41.7	38.3	N/A	36.9	29.91	52.10	47.60	40.9	N/A	51.0	37.66	62.30
Bankfull Width/Depth Ratio	14.6	17.4	N/A	16.9	14.84	32.38	11.90	13.4	N/A	22.4	10.39	45.59
Bankfull Entrenchment Ratio	5.0	4.7	N/A	1.2	5.65	4.69	6.3	6.3	N/A	6.8	3.62	5.67
Bankfull Bankheight Ratio	1.0	1.0	N/A	1.0	1.24	1.0	1.0	1.0	N/A	1.0	1.00	1.0
Cross Sectional Area between end pins (ft ²)	335.7	335.7	N/A	353.6	376.23	372.5	335.7	335.7	N/A	309.6	327.91	279.9
d50 (mm)	32.0	14.7	N/A	10.0	12.0	16.0	19.30	7.3	N/A	8.9	16.0	10.0
* Data was not provided	-											<u></u>
PARAMETER			Cross-Sect	tion 5 (Pool)								
DIMENSION	Baseline	MY1-2011		MY3-2013	MY4-2014	MY5-2015						
Bankfull Width (ft)	23.3	24.0	N/A	22.6	19.78	24.16						
Floodprone Width (ft)	69.8	68.8	N/A	72.7	71.57	75.00						
Bankfull Mean Depth	1.7	1.9	N/A	2.0	1.90	2.14						
Bankfull Max Depth (ft)	3.3	3.6	N/A	4.0	3.26	3.35						
Bankfull Cross-sectional Area (ft ²)	40.0	45.1	N/A	44.7	37.66	42.40						
Bankfull Width/Depth Ratio	13.5	12.8	N/A	11.4	10.39	11.29						
Bankfull Entrenchment Ratio	3.0	2.9	N/A	3.2	3.62	3.10						
Bankfull Bankheight Ratio	1.0	1.0	N/A	1.0	1.00	1.0						
Cross Sectional Area between end pins (ft ²)	217.2	217.2	N/A	192.7	175.3	210.9						
d50 (mm)	0.4	0.8	N/A	N/A	N/A	N/A						
							I					

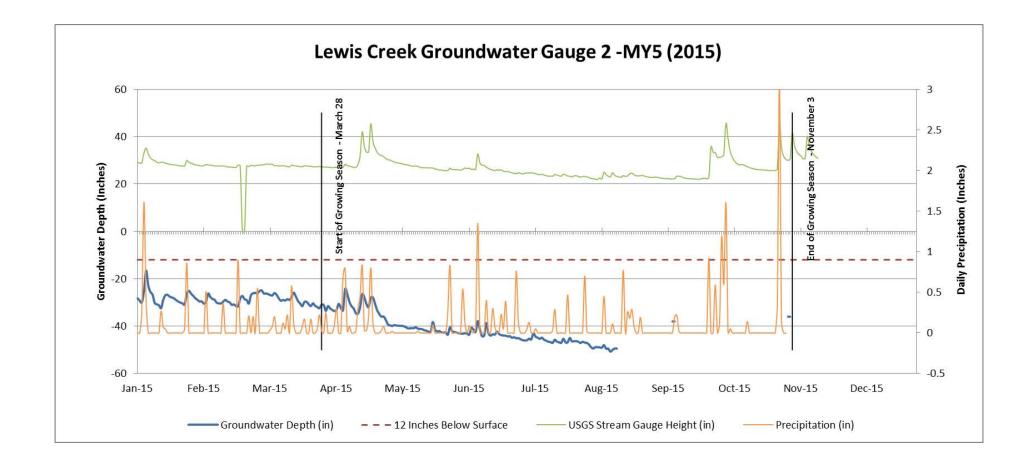
Appendix D. Stream Survey Data Table 10.1a Monitoring - Stream Reach Morphology Data Table Lewis Creek Stream Restoration/DMS Project No. 733

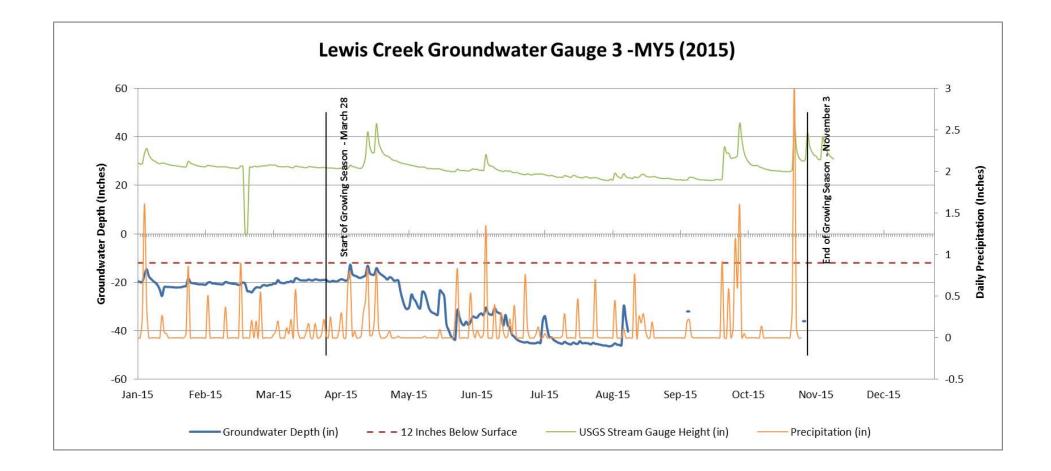
Parameter			Base	eline					MY01-	2011					MY02-	2012		
											[[
DIMENSION	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
Bankfull Width (ft)	22.70	23.73	23.80	24.70	*	3	23.16	24.11	23.41	25.78	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Floodprone Width (ft)	114.20	128.47	122.30	148.90	*	3	116.14	128.07	120.34	147.75	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Mean Depth (ft)	1.60	1.77	1.70	2.00	*	3	1.48	1.57	1.49	1.75	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Max Depth (ft)	2.60	2.90	3.00	3.10	*	3	2.55	2.67	2.63	2.85	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Cross Sectional Area (ft2)	36.30	41.87	41.70	47.60	*	3	34.52	37.88	38.28	40.85	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Width/Depth Ratio	11.90	13.57	14.20	14.60	*	3	13.38	15.44	15.54	17.42	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Entrenchment Ratio	5.00	5.43	5.00	6.30	*	3	4.67	5.33	5.01	6.31	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Bank Height Ratio	1.00	1.00	1.00	1.00	*	3	1.00	1.00	1.00	1.00	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Bankfull Velocity (fps)	6.27	10.22	11.23	13.16	*	3	1.23	1.73	1.47	2.49	*	3	N/A	N/A	N/A	N/A	N/A	N/A
PROFILE																		
Riffle Length (ft)	11.75	34.2	-	58.75	-	3	30.62	51.02	-	71.88	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Riffle Slope (ft/ft)	0.0100	0.0120	-	0.0500	-	3	0.0101	0.0144	-	0.0245	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Pool Length (ft)	14.92	19.4	-	23.86	-	3	19.97	42.60	-	62.56	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Pool Max depth	0.5	0.8	-	1.2	-	3	1.04	1.24	-	1.46	*	3	N/A	N/A	N/A	N/A	N/A	N/A
Pool Spacing (ft)	62.64	188.3	-	277.42	-	3	97.17	135.33	-	206.32	*	3	N/A	N/A	N/A	N/A	N/A	N/A
PATTERN																		
Channel Beltwidth (ft)	49.42	-	-	98.83	-	-	49.42	-	-	98.83	-	-	N/A	N/A	N/A	N/A	N/A	N/A
Radius of Curvature (ft)	49.42	-	-	76.60	-	-	49.42	-	-	76.60	-	-	N/A	N/A	N/A	N/A	N/A	N/A
Meander Wavelength (ft)	197.67	-	-	296.50	-	-	197.67	-	-	296.50	-	-	N/A	N/A	N/A	N/A	N/A	N/A
Meander Width Ratio	2	-	-	4	-	-	2	-	-	4	-	-	N/A	N/A	N/A	N/A	N/A	N/A
ADDITIONAL REACH PARAMETERS																		
Rosgen Classification			C						C4						N/A			
Channel Thalweg length (ft)			17	50					175						N/A			
Sinuosity (ft)			1.	29					1.2	9					N/A	4		
Water Surface Slope (Channel) (ft/ft)			0.0	022					0.002						N/A			
BF slope (ft/ft)			0.0	024					0.002						N/A			
Ri%/Ru%/P%/G%/S%			20/25/2	27/22/4					20/26/28				N/A	N/A	N/A	N/A	N/A	N/A
SC%/Sa%/G%/C%/B%/Be%			0.01/0.53/0.	13/0.29/0.02					16/185/2				N/A	N/A	N/A	N/A	N/A	N/A
d16/d35/d50/d84/d95		d50=	=19.30/d84=1	10.18/d95=12	26.39			0	.46/2.76/5.98/	21.70/36.73			N/A	N/A	N/A	N/A	N/A	N/A
% of reach with eroding banks			0.0	1%					0.019	%					N/A	Ą		
Channel Stability or Habitat Metric			-															
Biological or Other																		

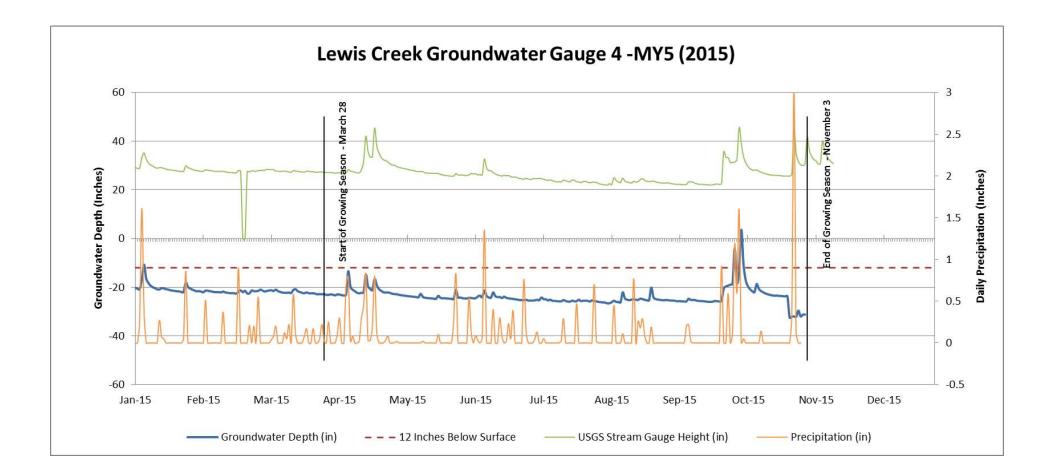
Appendix D. Stream Survey Data Table 10.1b Monitoring - Stream Reach Morphology Data Table Lewis Creek Stream Restoration/DMS Project No. 733

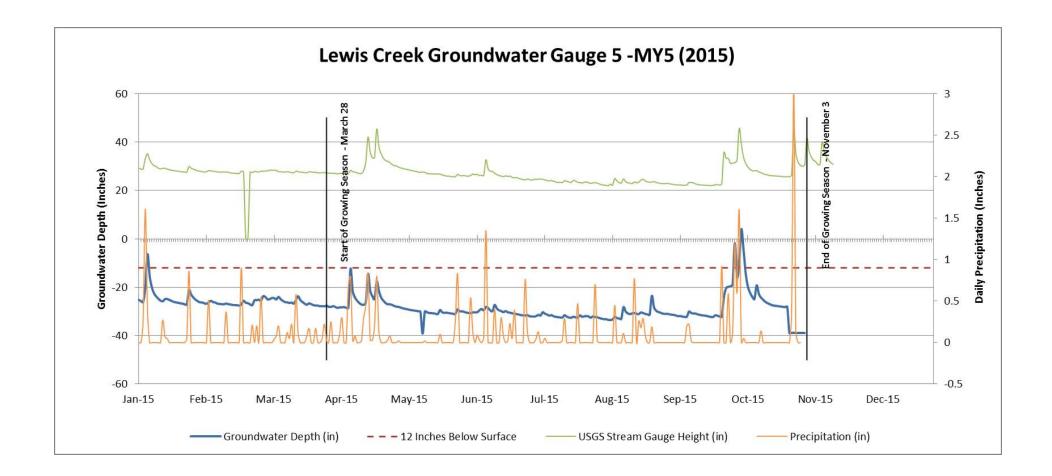

_	MY03-2013								MY04-2	2014					MY05-2	2015		
Parameter						1												
DIMENSION	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
Bankfull Width (ft)	19.30	22.54	23.30	25.03	2.93	3	19.78	22.44	21.07	26.46	2.89	3	23.93	25.32	25.58	26.44	1.28	3
Floodprone Width (ft)	99.74	118.01	123.58	130.71	16.22	3	71.57	103.23	119.05	119.07	22.39	3	120.00	130.00	120.00	150.00	17.32	3
Bankfull Mean Depth (ft)	0.86	1.20	1.26	1.48	0.31	3	1.26	1.53	1.42	1.90	0.27	3	0.58	1.02	0.79	1.68	0.58	3
Bankfull Max Depth (ft)	2.12	2.43	2.58	2.60	0.27	3	2.49	2.83	2.73	3.26	0.32	3	2.69	3.09	3.16	3.43	0.38	3
Bankfull Cross Sectional Area (ft2)	29.30	39.07	36.93	50.98	11.00	3	29.91	33.62	33.28	37.66	3.17	3	28.10	47.50	52.10	62.30	17.56	3
Width/Depth Ratio	16.91	19.28	18.49	22.44	2.84	3	10.39	15.43	14.84	21.04	4.37	3	14.24	30.74	32.38	45.59	15.74	3
Entrenchment Ratio	1.14	4.40	5.30	6.77	2.92	3	3.62	4.59	4.50	5.65	0.83	3	4.69	5.13	5.02	5.67	0.50	3
Bank Height Ratio	1.00	1.00	1.00	1.00		3	1.00	1.08	1.00	1.24	0.11	3	1.00	1.00	1.00	1.00	0.00	3
Bankfull Velocity (fps)	1.23	1.52	1.46	1.86	0.32	3	1.36	1.45	1.45	1.54	0.07	3	0.81	1.11	1.05	1.47	0.33	3
PROFILE																		
Riffle Length (ft)	30.10	59.47	-	94.04	-	-	18.76	50.14	-	98.40	-	-	18.76	50.14	-	98.40	-	-
Riffle Slope (ft/ft)	0.0101 0.01 - 0.0245					0.01	0.02	-	0.03	-	-	0.01	0.02	-	0.03	-	-	
Pool Length (ft)	24.39 40.51 - 65.72					19.72	19.72	-	19.72	-	-	19.72	19.72	-	19.72	-	-	
Pool Max depth	3.31					2.02	2.02	-	2.02	-	-	2.02	2.02	-	2.02	-	-	
Pool Spacing (ft)	24.39	93.99	-	193.21	-	-	NA	NA	-	NA	-	-	NA	NA	-	NA	-	-
PATTERN																		
Channel Beltwidth (ft)	49.42	-	-	98.83	-	-	49.42	-	-	98.83	-	-	49.42	-	-	98.83	-	-
Radius of Curvature (ft)	49.42	-	-	76.60	-	-	49.42	-	-	76.60	-	-	49.42	-	-	76.60	-	-
Meander Wavelength (ft)	197.67	-	-	296.50	-	-	197.67	-	-	296.50	-	-	197.67	-	-	296.50	-	-
Meander Width Ratio	2	-	-	4	-	-	2.00	-	-	4.00	-	-	2.00	-	-	4.00	-	-
ADDITIONAL REACH PARAMETERS																		
Rosgen Classification			C	4					C4						C4			
Channel Thalweg length (ft)			17	50					1750)					175	0		
Sinuosity (ft)			1.1	29					1.29)					1.29)		
Water Surface Slope (Channel) (ft/ft)			0.0	017					0.001	71					0.001	71		
BF slope (ft/ft)			0.00	1247					0.003	08					0.003	08		
Ri%/Ru%/P%/G%/S%			17/28/2	21/27/5					9/28/1/	27/5					9/28/1/	27 / 5		
SC%/Sa%/G%/C%/B%/Be%	0/17.6/92.3/0/0							5 / 2.3 / 87.3 /	0/5.3/0				0.3	/ 20.3 / 63 /	6.7/ 9.3 / 0.3			
d16/d35/d50/d84/d95	3.6/7.0/8.6/15.66/22.16							5.7 / 11.3 / 16	/ 32 / 362				2.5	/ 8.1 / 15.7 /	160.3 / 712.7			
% of reach with eroding banks			0.0	1%					0.019	%					0.019	%		
Channel Stability or Habitat Metric				_	_	_			_		_			_	_	_		
Biological or Other																		


Appendix E: Hydrologic Data


Table 11. Verification of Bankfull Events


Date of Collection	Date of Occurrence	Method	Photo # (if available)	Feet Above Average Bankfull Elevation
Sep-12	Unknown	Crest Gauge; visual indicators	NA	1.5
Oct-13	Sping/Summer	Crest Gauge; visual indicators	NA	0.8
Aug-14	Spring/Summer	Crest Gauge; visual indicators	NA	1
Sep-15	Spring/Summer	Crest Gauge; visual indicators	Below	0.7





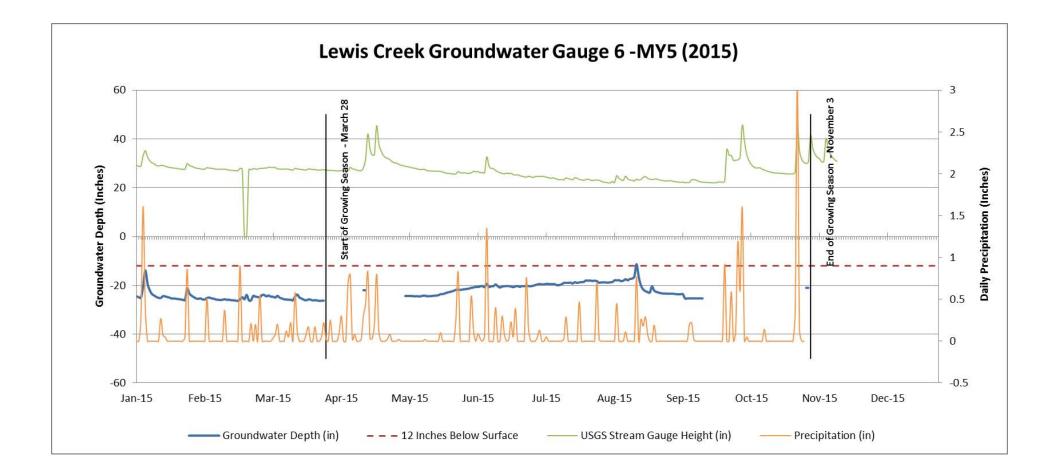


Table 12. Wetland Gauge Attainment Data

		MY	5 (2015)			М	Y4 (2014)			MY3	3 (2013)		
Gauge #	Max# Conseq. Days	% Growing Season	Success Criteria Attained	% of Growing Season Monitored	Max# Conseq. Days	% Growing Season	Success Criteria Attained	% of Growing Season Monitored	Max# Conseq. Days	% Growing Season	Success Criteria Attained	% of Growing Season Monitored	
1	0	0	NA	46%	3	1	NA	18%	0	0	NA	5%	
2	0	0	NA	63%	0	0	NA	75%	0	0	NA	34%	
3	0	0	NA	63%	1	1	NA	75%	0	0	NA	23%	
4	2	1	NO	100%	0	0	NA	75%	0	0	NA	35%	
5	2	1	NO	100%	4	2	NO	100%	0	0	NA	24%	
6	2	1	NA	63%	 2	1	NO	100%	 0	0	NA	34%	

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Lewis Creek Stream Restoration Site City	County: Henderson County Sampling Date: 9-15-15
Applicant/Owner: NC DEQ Division of Mitigation Services	State: NC Sampling Point: DP #1
Investigator(s): Richard Mogensen/Heath Caldwell Sec	tion Townshin Pense:
	Elat
Subsection (I DD as MI DA), MI RA N-130B	elief (concave, convex, none): Flat Slope (%): 1
Subregion (LRR of MLRA): Lat: Lat:	Long: 82'21'02.72"W Datum: NAD-83
Soil Map Unit Name: Codorus/Hatboro Inclusions	NWI classification: PSS1B
Are climatic / hydrologic conditions on the site typical for this time of year?	
Are Vegetation, Soil, or Hydrology significantly distu	urbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology naturally problem	natic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sa	mpling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	
Hydric Soil Present? Yes X No	Is the Sampled Area
Wetland Hydrology Present? Yes X No	within a Wetland? Yes X No
Remarks:	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
X Surface Water (A1) True Aquatic Plants	
High Water Table (A2) Hydrogen Sulfide Od	dor (C1) Drainage Patterns (B10)
V later and in the second seco	res on Living Roots (C3) Moss Trim Lines (B16)
X Water Marks (B1) Presence of Reduce	
Sediment Deposits (B2) Recent Iron Reducti Drift Deposits (B3) Thin Muck Surface (· · · · · · · · · · · · · · · · ·
Drift Deposits (B3) Thin Muck Surface (Algal Mat or Crust (B4) Other (Explain in Re	
Iron Deposits (B5)	marks) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
X Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes X No Depth (inches): 3"	
Water Table Present? Yes <u>No X</u> Depth (inches):	
Saturation Present? Yes X No Depth (inches): 0"	Wetland Hydrology Present? Yes X No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	
Surface water was proport at overy site visit for th	
Surface water was present at every site visit for th	e last 3 years. The surface hydrology appears to
be disconnected to groundwater as indicated by the	le groundwater gauge data. Hydrology seems to
be flowing over the surface from the adjacent mou	ntain bog.

1

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP #1

Tree Stratum (Plot size: 30 ft diam)	Absolute <u>% Cover</u> 15	Dominant Species? Y		Dominance Test worksheet: Number of Dominant Species
2. Betula nigra	12	Y	FACW	That Are OBL, FACW, or FAC: 13 (A)
3. Salix nigra	12	Y	OBL	Total Number of Dominant
4 Cornus amomum	10	N	FACW	Species Across All Strata: <u>13</u> (B)
5.		<u></u>		Percent of Dominant Species
5 6				That Are OBL, FACW, or FAC: 100% (A/B)
				Prevalence Index worksheet:
8				Total % Cover of:Multiply by:
8		- Total Cau		OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 30 ft diam)		= Total Cov	er	FACW species x 2 =
1. Alnus serrulata	15	Y	OBL	FAC species x 3 =
2. Salix cinerea	12	Y	FACW	FACU species x 4 =
3. Acer rubrum	8	Y	FAC	UPL species x 5 =
4				Column Totals: (A) (B)
5				
6				Prevalence Index = B/A =
7				Hydrophytic Vegetation Indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
9				× 2 - Dominance Test is >50%
10				3 - Prevalence Index is ≤3.0 ¹
		= Total Cove	er	4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 30 ft diam)				data in Remarks or on a separate sheet)
1. Carex lurida	18	<u>Y</u>	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Juncus effusus	15	Y	FACW	
3, Vernonia noveborensis	12	Y	FACW	¹ Indicators of hydric soil and wetland hydrology must
4. Impatiens capensis	12	<u>Y</u>	FACW	be present, unless disturbed or problematic.
5. Scirpus cyperinus	10	Y	FACW	Definitions of Four Vegetation Strata:
6. Polygonum hydropiperoides	10	Y	OBL	Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or
7. Eutrochium purpureum	8	N	FAC	more in diameter at breast height (DBH), regardless of height.
8. Eupatorium perfoliatum	8	N	FACW	in sign.
9. Solidago rugosa	5	<u>N</u>	FAC	Sapling/Shrub – Woody plants, excluding vines, less
10. Lobelia cardinalis	3	N	FACW	than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
11. Ludwigia alternifolia	3	N	FACW	
12				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: <u>30 A DIAM</u>)		Total Cove	er	
1 Toxicodendron radicans	10	Y	FAC	Woody vine – All woody vines greater than 3.28 ft in height.
	8	N	N/A	
2 Vitus spp		14	INA	
2. Vitus spp 2. Rubus allegheniensis	-	N	EACH	
3. Rubus allegheniensis	8	N	FACU	
3. Rubus allegheniensis 4. Parthenocissus quinquefolia	-	N N	FACU	Hydrophytic
3 Rubus allegheniensis 4. Parthenocissus quinquefolia 5.	8			Hydrophytic Vegetation
3. Rubus allegheniensis 4. Parthenocissus quinquefolia	8 5		FACU	

SOIL

	Matrix	<u></u>		ox Features				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks
0-6	7.5 YR 3/4	95					Sandy Loam	
6-12	10 YR 3/1	85	Mottling	20			Sandy Loam	Low chroma with prominent mottling
12-24	10YR 3/1	<u>95</u>	Mottling	20			Loam	
Type: C=Co	ncentration, D=De	epletion, RI	M=Reduced Matrix, M	S=Masked	Sand Gra	ains.		
Hydric Soil Ir							Indica	ators for Problematic Hydric Soils ³ :
Black His Hydrogen Stratified 2 cm Muc Depleted Thick Dar Sandy Mu MLRA Sandy Gla Sandy Re Stripped M	pedon (A2) sulfide (A4) Layers (A5) k (A10) (LRR N) Below Dark Surface k Surface (A12) ucky Mineral (S1) 147, 148) eyed Matrix (S4)	(LRR N,	Dark Surfac Polyvalue B Thin Dark S Loamy Gley Depleted Ma Redox Dark Depleted Da Redox Depr Iron-Mangar MLRA 13 Umbric Surfa X Piedmont Fl Red Parent	elow Surface urface (S9) (ed Matrix (F atrix (F3) Surface (F6 urk Surface (essions (F8) nese Masses 36) ace (F13) (N oodplain Soi	(MLRA 1 2) F7) s (F12) (I ILRA 13 ils (F19)	47, 148) .RR N, 6, 122) (MLRA 14)	148) C Pi Vi O ³ Indi 8) wet	cm Muck (A10) (MLRA 147) oast Prairie Redox (A16) (MLRA 147, 148) iedmont Floodplain Soils (F19) (MLRA 136, 147) ery Shallow Dark Surface (TF12) ther (Explain in Remarks) icators of hydrophytic vegetation and tland hydrology must be present, ess disturbed or problematic.
Type:	iyer (ii observed	<i>..</i> .						
Depth (inch	loc).							- · · · ×
Remarks: Ma	apped as Co	odorus v vhich ap	which is a Hyd opears to be p	ric B soi resent a	l with t the v	inclusic vetland	Hydric Soil ons of Hat area.	Present? Yes X No boro silt loam. Hatboro is a

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont Region

Project/Site: Lewis Creek Str	ream Restoration S	Site City/C	ounty: Henderson C	ounty	Sampling Date: 9	-15-15
Applicant/Owner: NC DEQ D				State: NC	Sampling Point:	
Investigator(s): Richard Mog			on, Township, Range:	_ State	_ Sampling Point.	UF #2
Landform (hillslope, terrace, etc.); Floodplain			ne). Flat	Slope	(%). 1
Subregion (LRR or MLRA):	LRA La	. 35'22'43.27" N	Long: 82'	21'02.72"W	Olope	(70). 1
Soil Map Unit Name: Codorus/	Hatboro Inclusions)		NWI classific		NAD-83
Are climatic / hydrologic conditio	ons on the site typical	for this time of year? Y	es X No	(If no, explain in R	(emarks)	
Are Vegetation, Soil					present? Yes X	No
Are Vegetation, Soil						
SUMMARY OF FINDING				explain any answe ons, transects	경향 소방 지역에 많아들지만 수가 잘 많다. 것이 가지만	tures, etc.
and the second second second second						
Hydrophytic Vegetation Preser	nt? Yes X Yes X		is the Sampled Area	6.2		
Hydric Soil Present? Wetland Hydrology Present?			within a Wetland?	Yes_X	No	
Remarks:	Yes X	No				
HYDROLOGY						
Wetland Hydrology Indicator	s:	1154		Secondary Indian	ators (minimum of tw	o roquiro di
Primary Indicators (minimum o		ck all that apply)		Surface Soil		o required)
X_ Surface Water (A1)		True Aquatic Plants (I	314)			free (D0)
High Water Table (A2)		Hydrogen Sulfide Odd			getated Concave Su	inace (B8)
X Saturation (A3)			s on Living Roots (C3)	Drainage Pat		
X Water Marks (B1)		Presence of Reduced			Water Table (C2)	
Sediment Deposits (B2)		Recent Iron Reduction		Dry-Season V Crayfish Burr		
Drift Deposits (B3)		Thin Muck Surface (C	승규는 것이 아직 것이 같은 것이 있는 것이 같이 많이 많이 많이 많이 많이 많이 없다.		isible on Aerial Imag	erv (C9)
Algal Mat or Crust (B4)		Other (Explain in Rem			tressed Plants (D1)	
Iron Deposits (B5)					Position (D2)	
Inundation Visible on Aeria				Shallow Aqui	itard (D3)	
X Water-Stained Leaves (B9)			Microtopogra	phic Relief (D4)	
Aquatic Fauna (B13)				FAC-Neutral	Test (D5)	
Field Observations:	v					
Surface Water Present?	Yes <u>No</u>	_ Depth (inches): 3"				
	Yes No X					
Saturation Present? (includes capillary fringe) Describe Recorded Data (strea	Yes X No				t? Yes X	No
Describe Recorded Data (strea	in gauge, monitoring (weil, aeriai photos, prev	lious inspections), if ava	illable:		
Remarks:						
Surface water was pr	esent at every	site visit for the	last 3 voore Th	a surface h	udrology appr	ore to
be disconnected to g	roundwater as	indicated by the	aroundwater a	augo data	Judrology appe	
be flowing over the si	urface from the	adjacent mour	e groundwater g	auge uata. r	Tyurology see	ans to
so norming over the er		aujacent mou	itam bog.			

.

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP #2

Trac Olastica (Distained 30 fl diam	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft diam) 1. Acer rubrum	<u>% Cover</u> 15	Species? Y	<u>Status</u> FAC	Number of Dominant Species
2. Betula nigra	12	Y	FACW	That Are OBL, FACW, or FAC: 13 (A)
3. Salix nigra	12	Y	OBL	Total Number of Dominant
4. Cornus amomum	10	N	FACW	Species Across All Strata: 13 (B)
				Percent of Dominant Species
5 6				That Are OBL, FACW, or FAC: 100% (A/B)
7				Prevalence Index worksheet:
8				Total % Cover of:Multiply by:
		= Total Cove		OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 30 ft diam)		- 10(a) 000		FACW species x 2 =
1. Alnus serrulata	15	Y	OBL	FAC species x 3 =
2. Salix cinerea	12	Y	FACW	FACU species x 4 =
3. Acer rubrum	8	Y	FAC	UPL species x 5 =
4				Column Totals: (A) (B)
5		-		
6				Prevalence Index = B/A =
7				Hydrophytic Vegetation Indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
9				x2 - Dominance Test is >50%
10				3 - Prevalence Index is ≤3.0 ¹
Harth Olaston (OLA) 30 ft diam		= Total Cove	er	4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: <u>30 ft diam</u>) 1. Carex lurida	10	v	0.01	data in Remarks or on a separate sheet)
2. Juncus effusus	<u>18</u>	Y Y	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
3. Vernonia noveborensis	- 13	<u>Y</u>	FACW	1 - di - e - e - e - e - e - e - e - e - e -
4. Impatiens capensis	12	Υ	FACW	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5. Scirpus cyperinus	10	Y	FACW	Definitions of Four Vegetation Strata:
6. Polygonum hydropiperoides	10	Y	OBL	
7. Eutrochium purpureum	- 10	N	FAC	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
8. Eupatorium perfoliatum		N	FACW	height.
g. Solidago rugosa		N N	FAC	Sapling/Shrub - Woody plants, excluding vines, less
10. Lobelia cardinalis	- 3	N	FACW	than 3 in. DBH and greater than or equal to 3.28 ft (1
11. Ludwigia alternifolia	- 3	N	FACW	m) tall.
12				Herb - All herbaceous (non-woody) plants, regardless
		Total Cause		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 ft diam.)		Total Cove		Woody vine - All woody vines greater than 3.28 ft in
1. Toxicodendron radicans	10	Y	FAC	height.
2. Vitus spp	8	N	N/A	
3. Rubus allegheniensis	8	N	UPL	
4. Parthenocissus quinquefolia	5	N	FACU	
5	_			Hydrophytic
6				Vegetation Present? Yes X No
	=	Total Cove	r	
Remarks: (Include photo numbers here or on a separate	sheet.)			
Hydrophytic vegetation dominant in ea	and the second sec			
	on suala.			

C	,	2	٠		
3	L	,		L	_
~	-	~	۰	-	-

Depth	cription: (Describe Matrix	to the de				or contirn	n the absence	of indicators.)	
(inches) 0-6	<u>Color (moist)</u> 7.5 YR 3/4	<u>%</u> 95	Color (moist)	x Feature %		_Loc ²	Texture Sandy Loam	Rem	arks
6-12	10 YR 3/1	85	Mottling	20				1	
12-24	10YR 3/1						Sandy Loam	Low chroma with	prominent mottling
		95	Mottling	20			Loam		
17									
Hydric Soil I	oncentration, D=Dep	letion, RM	=Reduced Matrix, M	S=Masked	Sand Gra	iins.		=Pore Lining, M=Ma tors for Problemat	
Black Hi: Hydroge Stratified 2 cm Mu Depleted Thick Da Sandy M MLRA Sandy G X Sandy R	bipedon (A2) stic (A3) en Sulfide (A4) d Layers (A5) ick (A10) (LRR N) d Below Dark Surfac ark Surface (A12) lucky Mineral (S1) (L A 147, 148) sileyed Matrix (S4) ledox (S5) Matrix (S6)		Polyvalue Be Thin Dark St Loamy Gleye Depleted Ma Redox Dark Depleted Da Redox Depre Iron-Mangan MLRA 13 Umbric Surfa Red Parent M	urface (S9) ed Matrix (I trix (F3) Surface (F rk Surface essions (F8 esse Masse 6) ace (F13) (I bodplain So	(MLRA 1 F2) 6) (F7) 8) 95 (F12) (L MLRA 136 bills (F19) (47, 148) .RR N, 5, 122) MLRA 14	148) Co Pi Ve Ol ³ India 8) wet	cm Muck (A10) (ML oast Prairie Redox ((MLRA 147, 148) edmont Floodplain S (MLRA 136, 147) ery Shallow Dark Su ther (Explain in Rem cators of hydrophytic land hydrology mus ess disturbed or pro	A16) Soils (F19) Inface (TF12) narks) c vegetation and t be present,
Restrictive L	ayer (if observed):				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			cas distanced or pro	olemand.
Type: Depth (inc	ches):						Hydric Soil I	Present? Yes X	No
Remarks: M Hy	apped as Coo ydric A soil wł	dorus w nich ap	rhich is a Hydi pears to be pr	ric B so resent a	il with It the w	inclusio vetland	ons of Hat	boro silt loam	. Hatboro is a

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont Region

Project/Site: Lewis Creek Stream I	Restoration Site	City/Cour	ty: Henderson Co	ounty	Sampling Date: 12-5	5-15		
Applicant/Owner: NC DEQ Division	of Mitigation Serv	vices		110	Sampling Point: D			
Investigator(s): Richard Mogenser		Section,	Township, Range:			1 110		
Landform (hillslope, terrace, etc.): Flo	Contract of the second	Local relief (ne): Flat	Slope (%)	: 1		
Subregion (LRR or MLRA): MLRA					Datum: N			
Soil Map Unit Name: Codorus	LUI			NWI classific		AD-83		
Are climatic / hydrologic conditions on t	the site typical for this	s time of year? Yes						
Are Vegetation, Soil, or					present? Yes X 1			
Are Vegetation, Soil, or					A second s	NO		
SUMMARY OF FINDINGS - A			21	explain any answe		es etc		
	635		a point recent		, important reature			
Hydrophytic Vegetation Present?	Yes N	IS	the Sampled Area		1.53			
Hydric Soil Present? Wetland Hydrology Present?	Yes N	WI	thin a Wetland?	Yes	No X			
Remarks:	Yes N	0						
Area is upland floodplain adjac obvious signs of surface or sul			Janoalononiai Tre	siana.740				
HYDROLOGY								
Wetland Hydrology Indicators:				Secondary Indica	ators (minimum of two re	quired)		
Primary Indicators (minimum of one is	required; check all t	hat apply)		Surface Soil Cracks (B6)				
Surface Water (A1)	True	Aquatic Plants (B14)	Sparsely Ver	getated Concave Surfac	e (B8)		
High Water Table (A2)		rogen Sulfide Odor ((SSP	Drainage Pa	tterns (B10)	1921 22		
Saturation (A3)	Oxid	lized Rhizospheres o	n Living Roots (C3)	Moss Trim L	ines (B16)			
Water Marks (B1)		ence of Reduced Iro		Dry-Season	Water Table (C2)			
	Sediment Deposits (B2) Recent Iron Reduction in Tilled Soils (C6) Crayfish Burrows (C8)							
X Drift Deposits (B3)		Muck Surface (C7)			isible on Aerial Imagery	(C9)		
Algal Mat or Crust (B4) Iron Deposits (B5)	Othe	er (Explain in Remark	s)	· · · · · · · · · · · · · · · · · · ·	tressed Plants (D1)			
Inundation Visible on Aerial Image	erv (87)			Geomorphic Shallow Aqui	Position (D2)			
Water-Stained Leaves (B9)					aphic Relief (D4)			
Aquatic Fauna (B13)				FAC-Neutral				
Field Observations:					rest (Bo)			
Surface Water Present? Yes	No X Dep	oth (inches):						
	No X Dep							
Saturation Present? Yes (includes capillary fringe)	No X Dep	oth (inches):	Wetland H	lydrology Presen	nt? Yes No	x		
Describe Recorded Data (stream gaug	ge, monitoring well, a	erial photos, previou	s inspections), if ava	ilable:				
Remarks:								
NO signs of standing wate	er Groundwai		d regular field	mogouromo	nto tokon over t			
years throughout the Lew	is Crock Eloo	del gauges and	a regular nelu	ineasureme	ents taken over ti	hree		
yours throughout the Lew	IS CIECK I 1000	uplain do not i	nuicate wetiai	ia nyarology	is present.			
					· · · · · ·			

VEGETATION (Four Strata) - Use scientific names of plants.

Sampling Point: DP #3

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft diam)		Species?		Number of Dominant Species
1Acer rubrum	15	Y	FAC	That Are OBL, FACW, or FAC: 8 (A)
2. Betula nigra	6	N	FACW	Total Number of Dominant
3. Salix cinerea	20	<u>Y</u>	FACW	Species Across All Strata: 11 (B)
4. Liquidambar styraciflua	15	Y	FAC	
5. Platanus occidentalis	5	N	FACW	Percent of Dominant Species That Are OBL, FACW, or FAC: 72% (A/B)
6				
7				Prevalence Index worksheet:
8				Total % Cover of:Multiply by:
	-	= Total Cov	er	OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 30 ft diam)				FACW species x 2 =
1_ Liquidambar styrciflua	15	Y	FAC	FAC species x 3 =
2. Salix cinerea	12	Y	FACW	FACU species x 4 =
3. Acer rubrum	8	N	FAC	UPL species x 5 =
4. Pinus Strobus	5	N	UPL	Column Totals: (A) (B)
5				
6				Prevalence Index = B/A =
7				Hydrophytic Vegetation Indicators:
8				1 - Rapid Test for Hydrophytic Vegetation
9				× 2 - Dominance Test is >50%
10				3 - Prevalence Index is ≤3.0 ¹
	-	= Total Cov	er	4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 30 ft diam)		Total Ook		data in Remarks or on a separate sheet)
1. Ambrosia psilostachya	25	Y	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Apios americana	15	Y	FACW	
3. Agrimonia gryposepala	10	Y	FACU	¹ Indicators of hydric soil and wetland hydrology must
4. Impatiens capensis	5	N	FACW	be present, unless disturbed or problematic.
5. Sorghum halapense	5	N	FACW	Definitions of Four Vegetation Strata:
6. Polygonum pennsylvanica	5	N	FAC	Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or
7. Solidago rugosa	8	N	FAC	more in diameter at breast height (DBH), regardless of
8. Elymus canadensis	8	N	FACU	height.
9 Echinochloa crus-gali	8	N	FAC	Sapling/Shrub - Woody plants, excluding vines, less
10			11.5	than 3 in. DBH and greater than or equal to 3.28 ft (1
11				m) tali.
12.				Herb - All herbaceous (non-woody) plants, regardless
		= Total Cove		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30 Adiam)			31	Woody vine - All woody vines greater than 3.28 ft in
1. Toxicodendron radicans	10	Υ	FAC	height.
2. Vitus spp	8	N	N/A	
3. Rubus allegheniensis	25	Y	FACU	
4. Parthenocissus quinquefolia	5	N	FACU	
5. Rosa multiflora	10	Y	FACU	Hydrophytic
6.				Vegetation Present? Yes X No
	-	= Total Cove	ar	Presentr res _/_ No
D		- Total Cove		
Remarks: (Include photo numbers here or on a separate				
Hydrophytic vegetation isn't dominant	in any sti	rata.		

SOIL

		to the de	pth needed to docur			or confirm	n the absence	of indicators.)
Depth (inches)	Color (moist)	%	Color (moist)	x Features %		1002	Texture	Remarks
0-3	2.5 Y 7/8	100			Type	LUC	Sand	Remarks
3-10	2.5 Y 5/3	85					Loam	
10-24	2.5 Y 6/4	95	Mottling					
	2.3 1 0/4	95	Mottling	20			Clay Loam	Some mottling
		_						
¹ Type: C=C	oncentration, D=Dep	letion, RM	Reduced Matrix, M	S=Masked	Sand Gra	ins.	² Location: PI	_=Pore Lining, M=Matrix.
Hydric Soil	Indicators:							ators for Problematic Hydric Soils ³ :
Histosol			Dark Surface				2	cm Muck (A10) (MLRA 147)
	pipedon (A2)		Polyvalue Be				148) C	oast Prairie Redox (A16)
	stic (A3) In Sulfide (A4)		Thin Dark Su Loamy Gleye			47, 148)		(MLRA 147, 148)
	d Layers (A5)		Depleted Ma		F2)		P	iedmont Floodplain Soils (F19) (MLRA 136, 147)
2 cm Mu	ick (A10) (LRR N)		Redox Dark		6)		V	ery Shallow Dark Surface (TF12)
	Below Dark Surfac	e (A11)	Depleted Dat				_ 0	ther (Explain in Remarks)
	ark Surface (A12) lucky Mineral (S1) (I	DD N	Redox Depre Iron-Mangan			00 N		
	147, 148)	IXIX IN,	MLRA 13		35 (F 12) (I	.RR N,		
	leyed Matrix (S4)		Umbric Surfa	the second s	MLRA 13	6, 122)	³ Ind	icators of hydrophytic vegetation and
	Sandy Redox (S5) X Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be present,							tland hydrology must be present,
and the second se	Matrix (S6) ayer (if observed):	_	Red Parent M	Material (F	21) (MLR/	A 127, 147	7) uni	less disturbed or problematic.
Type:	ayer (ir observeu).							
Depth (ind	ches):						Hydric Soil	Present? Yes No X
Remarks:								
M	apped as Coo	dorus v	vhich is a Hydı	ric B sc	il and	can be	a wetland	or upland soil depending
0	n the aquic me	oisture	regime. Not a	wetlan	d soil.			